
- •Черкаський державний технологічний університет
- •Конструювання та технологія виробництва еом
- •10. Поверхневий монтаж електронних компонентів 104
- •11. Середовища передавання даних 114
- •1. Принципи проектування
- •Основні задачі проектування еом
- •Методологія проектування конструкцій еом
- •1. Потрібно діяти:
- •2.Основні етапи проектування еом , види виробів та проектної документації Основні етапи проектування
- •Види виробів
- •Види і комплектність конструкторських документів
- •Конструкторські документи
- •Технологічні документи
- •Програмні документи
- •Програмні експлуатаційні документи
- •3. Критерії роботоздатності апаратури
- •Дві системи утворення посадок са і св
- •Шорсткість поверхонь деталей
- •4. Групи експлуатації, види виробів та випробування Експлуатаційні вимоги
- •Зовнішні фактори, що впливають на дієздатність
- •Кліматичні фактори
- •Механічні фактори.
- •Радіаційні фактори.
- •Категорії розміщення стаціонарних еом
- •Випробування еом і типових конструкцій
- •Припустимі значення параметрів факторів природних кліматичних умов для конкретних способів монтажу апаратури
- •5. Електричний захист еом Заземлення
- •Екранування
- •Захист еом від зовнішніх електромагнітних полів
- •2) Опір ізоляції між провідниками активної й пасивної ліній зв'язку
- •4) Порівнюють діючу напругу перешкоди в пасивній лінії із перешкодостійкістю мікросхеми.
- •Перешкоди на ланцюгах управління і живлення.
- •6. Конструювання з урахуванням тепла Розрахунок теплових режимів
- •Основні терміни
- •Способи переносу теплової енергії
- •Основні механізми переносу теплової енергії
- •Розрахунок теплового режиму еом
- •Розрахунок радіаторів
- •7. Вплив зовнішніх механічних навантажень (змф)
- •Функції збудження, частоти збудження і власні частоти.
- •Оцінка (розрахунок) дії вібрації
- •Стійкість до змф забезпечується:
- •Розрахунок на дії ударів
- •Амортизація еом
- •Методика вибору системи амортизатора
- •Схеми установки амортизаторів.
- •Захист фу від дестабілізованих факторів
- •8. Конструювання з урахуванням надійності
- •Показники надійності електронних пристроїв
- •Розрахунок надійності
- •Шляхи підвищення надійності електронних пристроїв
- •9. Технологія виробництва печатних плат Конструктивно-технологічна характеристика печатних плат
- •Механічна обробка печатних плат
- •Одержання малюнка печатної плати
- •Хімічні й гальванічні процеси виготовлення печатних плат
- •Типові технологічні процеси виготовлення печатних плат
- •10. Поверхневий монтаж електронних компонентів Корпуса мікросхем
- •Печатні плати
- •Матеріали для поверхневого монтажу
- •11. Середовища передавання даних Середовища передавання у комп'ютерних мережах
- •Коаксіальний кабель
- •Волоконно-оптичний кабель
- •Скручена пара
- •Сертифікація скрученої пари
- •Електромагнітне випромінювання та електромагнітна невразливість. Завади
- •Додатки до розділу 11 Додаток а. Моди в оптичних волокнах
- •Додаток в. Параметри оптоволокна
- •Додаток с. Структура світловоду і режими проходження променя
- •Додаток d. Потужність сигналу, втрати і посилення
- •Додаток е. Пропускна здатність, методи передачі і кодування
- •Додаток f. Джерела і приймачі випромінювання
- •Додаток g. Оптоволоконні кабелі
- •Додаток h. Оптичні з’єднувачі
- •Неразъемные соединения — сварка и сплайсы
- •Разъемные соединения
- •Коннекторы st, sc, fc, fddi, mt-rj, OptiSpeed lc, opti-jack, scdc и scqc, vf-45
Додаток f. Джерела і приймачі випромінювання
В качестве источников излучения используются светодиоды и полупроводниковые лазеры. Светодиоды (LED — Light Emited Diode) являются некогерентными источниками, генерирующими излучение в некоторой непрерывной области спектра шириной 30-50 нм. Из-за значительной ширины диаграммы направленности их применяют только при работе с многомодовым волокном. Самые дешевые излучатели работают в диапазоне волн 850 нм (с них началась волоконная связь). Передача на более длинных волнах эффективнее, но технология изготовления излучателей на 1300 нм сложнее и они дороже. По конструкции различают светодиоды с поверхностным и боковым излучением. Последние обладают более узкой направленностью луча. Из-за относительно невысокого быстродействия светодиодов их применяют только до скоростей 622 Мбит/с, где с учетом избыточности кода 8В/10В скорость в линии составляет 777,6 Мбод.
Лазеры являются когерентными источниками, обладающими узкой спектральной шириной излучения (1-3 нм, в идеале - монохромные). Лазер дает узконаправленный луч, необходимый для одномодового волокна. Длина волны — 1300 или 1550 нм, осваиваются и более длинноволновые диапазоны. Быстродействие выше, чем у светодиодов. Лазер менее долговечен, чем светодиод, и более сложен в управлении. Мощность излучения сильно зависит от температуры, поэтому приходится применять обратную связь для регулировки тока. Лазерный источник чувствителен к обратным отражениям: отраженный луч, попадая в оптическую резонансную систему лазера, в зависимости от сдвига фаз может вызвать как ослабление, так и усиление выходного сигнала. Нестабильность уровня сигнала может приводить к неработоспособности соединения, поэтому требования к величине обратных отражений в линии для лазерных источников гораздо жестче. Лазерные источники применяются и для работы с многомодовым волокном (например, в технологии Gigabit Ethernet 1000Base-LX).
Спектральные характеристики излучателей изображены на рис. F.1.
Рис. F.1. Спектральные характеристики излучателей: а — светодиод, б — лазер
Детекторами излучения служат фотодиоды. Существует ряд типов фотодиодов, различающихся по чувствительности и быстродействию. Простейшие фотодиоды со структурой рп имеют низкую чувствительность и большое время отклика. Большим быстродействием обладают диоды со структурой pin, у которых время отклика измеряется единицами наносекунд при приложенном напряжении от единиц до десятков вольт. Лавинные диоды обладают максимальной чувствительностью, но требуют приложения напряжения в сотни вольт, и их характеристики сильно зависят от температуры. Зависимость чувствительности фотодиодов от длины волны имеет явно выраженные максимумы на длинах волн, определяемых материалом полупроводника. Самые дешевые кремниевые фотодиоды имеют максимальную чувствительность в диапазоне 800-900 нм, резко спадающую уже на 1000 нм. Для более длинноволновых диапазонов используют германий и арсенид индия и галлия.
На основе излучателей и детекторов выпускают готовые компоненты — передатчики, приемники и приемопередатчики. Эти компоненты имеют внешний электрический интерфейс ТТЛ или ЭСЛ. Оптический интерфейс — коннектор определенного типа, который часто устанавливают на отрезок волокна, приклеенный непосредственно к кристаллу излучателя или детектора. Передатчик (transmitter) представляет собой излучатель со схемой управления. Основными оптическими параметрами передатчика являются выходная мощность, длина волны, спектральная ширина, быстродействие и долговечность. Мощность передатчиков указывают для конкретных типов волокон (чтобы в расчетах не учитывать диаграмму направленности, диаметр и апертуру излучателя). Для одного и того же передатчика в ММ-волокно с большим диаметром сердцевины вводится большая мощность. Быстродействие определяется временем нарастания (от 10 до 90 % мощности) и спада (от 90 до 10 %) сигнала на выходе. Долговечность источника определяет время (миллионы часов), за которое мощность излучения падает на 3 дБ (деградация мощности происходит из-за разрушения структуры кристалла прибора).
Приемник (receiver) — это детектор с усилителем-формирователем. Приемник характеризуется диапазоном принимаемых волн, чувствительностью, динамическим диапазоном и быстродействием (полосой пропускания). Полоса, пропускания приемника BW определяется через время отклика tR зависящее от емкости диода со схемами подключения и сопротивления нагрузки:
Чувствительность приемника — минимальная детектируемая оптическая мощность — определяется уровнем шумов различного происхождения и в основном зависит от фотодиода. Динамический диапазон — разница между максимальной и минимальной детектируемой мощностью (в децибелах). Уровень максимальной мощности, при которой еще не происходит насыщения приемника, определяется как фотодиодом, так и усилителем. Для детектирования сигнала с уровнем ошибок не выше заданного уровня BER (Bit Errors Ratio — относительное количество ошибочных бит) мощность принимаемого сигнала должна лежать в пределах динамического диапазона. Так, например, для приемников с чувствительностью -33 дБм и динамическим диапазоном 20 дБ допустим уровень сигнала от -33 до - 13 дБм. Более высокие частоты передачи требуют более высокого уровня сигнала на входе приемника. Приемник различает уровни сигналов относительно некоторого порогового значения. Для расширения динамического диапазона пороговый уровень определяется динамически по усредненному значению входного сигнала. В большинстве схем кодирования уровень мощности оптического сигнала зависит от передаваемой информации (мощность тем больше, чем дольше выходной сигнал находится в активном состоянии). С точки зрения приема информации выгоднее схемы кодирования, у которых значения максимальной и минимальной мощности различаются как можно меньше. Для таких схем кодирования легче обеспечить большой динамический диапазон с безошибочным приемом информации.
Поскольку в сетях всегда используется двунаправленная связь, выпускают и трансиверы (transceiver) — сборку передатчика и приемника с согласованными параметрами. Для трансиверов, кроме вышеприведенных параметров передатчика и приемника, применимо понятие бюджета мощности.