
- •Черкаський державний технологічний університет
- •Конструювання та технологія виробництва еом
- •10. Поверхневий монтаж електронних компонентів 104
- •11. Середовища передавання даних 114
- •1. Принципи проектування
- •Основні задачі проектування еом
- •Методологія проектування конструкцій еом
- •1. Потрібно діяти:
- •2.Основні етапи проектування еом , види виробів та проектної документації Основні етапи проектування
- •Види виробів
- •Види і комплектність конструкторських документів
- •Конструкторські документи
- •Технологічні документи
- •Програмні документи
- •Програмні експлуатаційні документи
- •3. Критерії роботоздатності апаратури
- •Дві системи утворення посадок са і св
- •Шорсткість поверхонь деталей
- •4. Групи експлуатації, види виробів та випробування Експлуатаційні вимоги
- •Зовнішні фактори, що впливають на дієздатність
- •Кліматичні фактори
- •Механічні фактори.
- •Радіаційні фактори.
- •Категорії розміщення стаціонарних еом
- •Випробування еом і типових конструкцій
- •Припустимі значення параметрів факторів природних кліматичних умов для конкретних способів монтажу апаратури
- •5. Електричний захист еом Заземлення
- •Екранування
- •Захист еом від зовнішніх електромагнітних полів
- •2) Опір ізоляції між провідниками активної й пасивної ліній зв'язку
- •4) Порівнюють діючу напругу перешкоди в пасивній лінії із перешкодостійкістю мікросхеми.
- •Перешкоди на ланцюгах управління і живлення.
- •6. Конструювання з урахуванням тепла Розрахунок теплових режимів
- •Основні терміни
- •Способи переносу теплової енергії
- •Основні механізми переносу теплової енергії
- •Розрахунок теплового режиму еом
- •Розрахунок радіаторів
- •7. Вплив зовнішніх механічних навантажень (змф)
- •Функції збудження, частоти збудження і власні частоти.
- •Оцінка (розрахунок) дії вібрації
- •Стійкість до змф забезпечується:
- •Розрахунок на дії ударів
- •Амортизація еом
- •Методика вибору системи амортизатора
- •Схеми установки амортизаторів.
- •Захист фу від дестабілізованих факторів
- •8. Конструювання з урахуванням надійності
- •Показники надійності електронних пристроїв
- •Розрахунок надійності
- •Шляхи підвищення надійності електронних пристроїв
- •9. Технологія виробництва печатних плат Конструктивно-технологічна характеристика печатних плат
- •Механічна обробка печатних плат
- •Одержання малюнка печатної плати
- •Хімічні й гальванічні процеси виготовлення печатних плат
- •Типові технологічні процеси виготовлення печатних плат
- •10. Поверхневий монтаж електронних компонентів Корпуса мікросхем
- •Печатні плати
- •Матеріали для поверхневого монтажу
- •11. Середовища передавання даних Середовища передавання у комп'ютерних мережах
- •Коаксіальний кабель
- •Волоконно-оптичний кабель
- •Скручена пара
- •Сертифікація скрученої пари
- •Електромагнітне випромінювання та електромагнітна невразливість. Завади
- •Додатки до розділу 11 Додаток а. Моди в оптичних волокнах
- •Додаток в. Параметри оптоволокна
- •Додаток с. Структура світловоду і режими проходження променя
- •Додаток d. Потужність сигналу, втрати і посилення
- •Додаток е. Пропускна здатність, методи передачі і кодування
- •Додаток f. Джерела і приймачі випромінювання
- •Додаток g. Оптоволоконні кабелі
- •Додаток h. Оптичні з’єднувачі
- •Неразъемные соединения — сварка и сплайсы
- •Разъемные соединения
- •Коннекторы st, sc, fc, fddi, mt-rj, OptiSpeed lc, opti-jack, scdc и scqc, vf-45
Додаток е. Пропускна здатність, методи передачі і кодування
В
большинстве современных технологий
информация по световодам передается с
помощью импульсов в двухуровневой
дискретной форме (есть сигнал
-
нет сигнала),
аналога полярности электрического
сигнала здесь нет. Информационная
пропускная способность линии определяется
ее полосой пропускания и принятой
схемой кодирования. Полоса пропускания
определяется как максимальная частота
импульсов, различимых приемником. На
рис. Е.1
показаны результаты прохождения пары
импульсов через отрезки световодов
различной длины. Полоса пропускания
волоконной линии ограничивается из-за
явления дисперсии, поэтому она зависит
от длины. Особенно это заметно на
многомодовом волокне. Для многомодового
волокна ширина полосы
пропускания
(МГц)
связана с длиной L
(км) через параметр,
называемый полосой
пропускания А (МГцхкм):
Рис. Е.1. Дисперсионное ограничение длины волоконной линии
По
полосе пропускания А
можно определить
максимальную частоту, при которой
импульсы будут еще различимыми после
прохождения через световод заданной
длины. Можно решить и обратную задачу
— определить максимальную длину
световода, пропускающего импульсы
заданной частоты. Коэффициент А
приводится в
спецификации на волокно и указывается
для конкретной длины волны. Современные
многомодовые кабели имеют
=160-500
МГцхкм.
Для одномодового волокна в расчете полосы пропускания участвует молекулярная дисперсия Disp (пс/нм/км) и ширина спектра источника SW (нм), здесь можно использовать оценку
Современные одномодовые кабели и лазерные излучатели обеспечивают полосу пропускания порядка 1 ГГц при длине линии 100 км (технология 100BaseLH). Применение особо прозрачных фторцирконатных волокон позволит строить линии с участками без регенераторов длиной до 4600 км при скорости передачи порядка 1 Гбит/с.
Эффективность
использования полосы пропускания
определяется принятой схемой кодирования.
В технологии FDDI
(и 100BaseFX),
например, применяется физическое
кодирование по методу NRZI,
при котором один бит передается за 1
такт синхронизации, и логическое 4В/5В.
Это означает, что каждые
4 бита полезной
информации кодируются 5-битным символом,
передаваемым за
5 тактов. Таким
образом, коэффициент использования
полосы пропускания составляет
и
для передачи данных со скоростью 100
Мбит/с требуется обеспечить передачу
импульсов с частотой (полосой) 125 МГц.
В технологиях современных поколений используется когерентное излучение с модуляцией частоты или фазы сигнала. При этом достигается пропускная способность, измеряемая гигабитами в секунду при длине в сотни километров без регенерации. Другое направление — солитоновая технология, основанная на передаче сверхкоротких (10 пс) импульсов-солитонов. Эти импульсы распространяются без искажения формы, и в идеальной линии (без затухания) дальность связи не ограничена при гигабитных скоростях передачи. Для этих технологии, пока не имеющих отношения к локальным сетям, пропускная способность линии определяется иными способами.