
- •Черкаський державний технологічний університет
- •Конструювання та технологія виробництва еом
- •10. Поверхневий монтаж електронних компонентів 104
- •11. Середовища передавання даних 114
- •1. Принципи проектування
- •Основні задачі проектування еом
- •Методологія проектування конструкцій еом
- •1. Потрібно діяти:
- •2.Основні етапи проектування еом , види виробів та проектної документації Основні етапи проектування
- •Види виробів
- •Види і комплектність конструкторських документів
- •Конструкторські документи
- •Технологічні документи
- •Програмні документи
- •Програмні експлуатаційні документи
- •3. Критерії роботоздатності апаратури
- •Дві системи утворення посадок са і св
- •Шорсткість поверхонь деталей
- •4. Групи експлуатації, види виробів та випробування Експлуатаційні вимоги
- •Зовнішні фактори, що впливають на дієздатність
- •Кліматичні фактори
- •Механічні фактори.
- •Радіаційні фактори.
- •Категорії розміщення стаціонарних еом
- •Випробування еом і типових конструкцій
- •Припустимі значення параметрів факторів природних кліматичних умов для конкретних способів монтажу апаратури
- •5. Електричний захист еом Заземлення
- •Екранування
- •Захист еом від зовнішніх електромагнітних полів
- •2) Опір ізоляції між провідниками активної й пасивної ліній зв'язку
- •4) Порівнюють діючу напругу перешкоди в пасивній лінії із перешкодостійкістю мікросхеми.
- •Перешкоди на ланцюгах управління і живлення.
- •6. Конструювання з урахуванням тепла Розрахунок теплових режимів
- •Основні терміни
- •Способи переносу теплової енергії
- •Основні механізми переносу теплової енергії
- •Розрахунок теплового режиму еом
- •Розрахунок радіаторів
- •7. Вплив зовнішніх механічних навантажень (змф)
- •Функції збудження, частоти збудження і власні частоти.
- •Оцінка (розрахунок) дії вібрації
- •Стійкість до змф забезпечується:
- •Розрахунок на дії ударів
- •Амортизація еом
- •Методика вибору системи амортизатора
- •Схеми установки амортизаторів.
- •Захист фу від дестабілізованих факторів
- •8. Конструювання з урахуванням надійності
- •Показники надійності електронних пристроїв
- •Розрахунок надійності
- •Шляхи підвищення надійності електронних пристроїв
- •9. Технологія виробництва печатних плат Конструктивно-технологічна характеристика печатних плат
- •Механічна обробка печатних плат
- •Одержання малюнка печатної плати
- •Хімічні й гальванічні процеси виготовлення печатних плат
- •Типові технологічні процеси виготовлення печатних плат
- •10. Поверхневий монтаж електронних компонентів Корпуса мікросхем
- •Печатні плати
- •Матеріали для поверхневого монтажу
- •11. Середовища передавання даних Середовища передавання у комп'ютерних мережах
- •Коаксіальний кабель
- •Волоконно-оптичний кабель
- •Скручена пара
- •Сертифікація скрученої пари
- •Електромагнітне випромінювання та електромагнітна невразливість. Завади
- •Додатки до розділу 11 Додаток а. Моди в оптичних волокнах
- •Додаток в. Параметри оптоволокна
- •Додаток с. Структура світловоду і режими проходження променя
- •Додаток d. Потужність сигналу, втрати і посилення
- •Додаток е. Пропускна здатність, методи передачі і кодування
- •Додаток f. Джерела і приймачі випромінювання
- •Додаток g. Оптоволоконні кабелі
- •Додаток h. Оптичні з’єднувачі
- •Неразъемные соединения — сварка и сплайсы
- •Разъемные соединения
- •Коннекторы st, sc, fc, fddi, mt-rj, OptiSpeed lc, opti-jack, scdc и scqc, vf-45
11. Середовища передавання даних Середовища передавання у комп'ютерних мережах
Техніко-експлуатаційні характеристики середовищ передавання такі: час і швидкість поширення сигналів, вартість, швидкість загасання сигналу на одиницю довжини кабелю з урахуванням його частоти, опір одного метра, маса одного метра, завадостійкість у різних навколишніх середовищах, випромінювання в довкілля. Серед цих характеристик та параметрів визначають загальні, наприклад, швидкість передавання, завадостійкість, випромінювання, вартість, а також специфічні, властиві тільки конкретному типу середовища передавання.
Параметр електромагнітного випромінювання (ЕМВ) в довкілля характеризує ступінь та параметри паразитного випромінювання, що генерується під час передавання сигналу кабелем.
У KM можна використовувати такі середовища передавання. Ефірні середовища
Передавання в ефірних середовищах відбувається без використання кабелів. Залежно від частоти передавання ефірні канали поділяють на радіо-, інфрачервоні, ультракороткохвильові, мікрохвильові, лазерні.
Будь-який радіоканал формується на певній частоті-носію. Інформація по ньому передасться за допомогою модульованого радіосигналу. Канал мас незначну швидкість передавання (20-150 Кбіт/с), середню вартість, доступний для всіх видів радіозавад, працює тільки в межах радіодосяжності. Його використовують головно в пересувних станціях.
В інфрачервоному каналі сигнали інфрачервоних частот передають малогабаритні передавачі та приймають чутливі приймачі. Канал працює тільки в межах прямої оптичної видимості. Він нечутливий до електромагнітних завад. Відстань між станціями - до 3 км, швидкість передавання - 2—4 Мбіт/с. Приймачі та передавачі інфрачервоного діапазону досить дешеві. Недоліки каналу: недовговічність апаратури, велике загасання сигналів, якщо погана прозорість повітря (наприклад, є запиленість).
Для налагодження ультракороткохвильового каналу потрібна ультракороткохвильова приймальна та передавальна апаратура. Передавання відбувається за допомогою частотно-модульованих сигналів у досить широкому Діапазоні частот. Це дає змогу створити велику кількість каналів. Інформація передається на відстань 0,7-1,5 км зі швидкістю 20-40 Мбіт/с. Переваги каналу такі: мала потужність апаратури, наявність великої кількості каналів, можливість роботи в умовах поганої та непрямої видимості. Загалом ультракороткохвильовий канал має таку ж ефективність, як і радіоканал.
У мікрохвильовому каналі використано нову форму середовища передавання даних. Сигнали випромінюють спеціальні лазери, а приймають фотоприймачі. Канал добре працює в зоні прямої видимості. Інформація передається на відстань 15—20 км зі швидкістю до 20 Гбіт/с. Апаратура каналоутворення сьогодні є досить дорогою і недостатньо досконалою.
Загалом ефірними середовищами передають до кількох відсотків загального обсягу інформації KM. Сьогодні значення таких середовищ у KM зростає, що пов'язане з розвитком мереж бездротового передавання.
Коаксіальний кабель
Коаксіальні кабелі поряд зі скрученою парою є найпоширенішим середовищем передавання даних у KM. Вони мають високу швидкість передавання, завадостійкість, довговічність, помірну вартість. Для них розроблені прості засоби з'єднання з ЛМ.
Коаксіальний кабель має будову, зображену на рис. 11.1. Сигнал даних передається по центральній жилі кабелю, що виготовлена з міді або алюмінію. Навколо центральної жили є діелектрична оболонка. Для ліпшого захисту від завад цю оболонку поміщають у плетений екран або у фольгу та екран. Екрани добре захищають сигнал від електричних завад, проте не від магнітних. Навколо екрана є ізоляційна оболонка. Інколи такі прості коаксіальні кабелі об'єднують спільною оболонкою.
За техніко-експлуатаційними характеристиками розрізняють широко- та вузькосмугові коаксіальні кабелі.
Широкосмугові кабелі використовують для аналогового, широкосмугового передавання. Смуга перепускання такого кабелю, як звичайно, розділена на декілька аналогових каналів з різними частотами-носіями. Вона залежить від марки кабелю і може сягати 2—3 ГГц. Кабелі мають швидкість передавання сигналу 300-3000 Мбіт/с, загасання сигналу на частоті 100 МГц не більше 7 Дб на 100 м. Термін придатності - 10-12 років. Подовжинна затримка поширення сигналів - 2-5 нс/м.
Вузькосмугові кабелі застосовують для цифрового передавання. Вони мають швидкість передавання не більше 80 Мбіт/с, загасання сигналів на частоті 10 МГц - 4 Дб на 100 км. Решта параметрів збігається з аналогічними в широкосмугових кабелях.
Найуживанішими у ЛМ коаксіальними кабелями є RG-8 (товстий Ethernet) та RG-59 (тонкий Ethernet). Для приєднання до коаксіального кабелю використовують такі роз'єднувачі
• AUI (Attachment Unit Interface) - товстий Ethernet,
• BNC (Barrel Network Connector) — тонкий Ethernet.
Рис. 11.1 Будова коаксіального кабелю
Сфера застосування коаксіальних кабелів у KM невпинно звужується. У сфері магістральних сполучень їх витісняють волоконно-оптичні кабелі, які мають більшу смугу перепускання та менші втрати сигналу, а у локальних підсистемах - дешевша та простіша у прокладані й експлуатації скручена пара. Водночас широкосмугові коаксіальні кабелі мають ширшу смугу перепускання, ніж скручена пара, вони дешевші, надійніші та легші у прокладанні, ніж волоконно-оптичні. Вони ліпше, ніж скручена пара, придатні для передавання широкосмугового відеосигналу, їх широко застосовують оператори кабельного телебачення, а також у відео системах. Значна база вже встановлених коаксіальних кабелів та потреба їхнього використання в наявних мережах (захист інвестицій) потребує підтримки коаксіальних кабелів у стандартах сучасних KM.