- •1 Понятие высшей нервной деятельности, её отличие от низшей нервной деятельности
- •Понятие о высшей нервной деятельности
- •Высшая нервная деятельность
- •2 Вклад отечественных и зарубежных учёных в развитие учения о внд
- •Роль и.М.Сеченова, и.П.Павлова в развитии учения о высшей нервной деятельности.
- •История развития взглядов на внд
- •3.Предмет, задачи фвнДиСс. Методы исследования.
- •4. Понятие бр его характеристика классификация значение
- •5 Понятие ур его характеристика классификация значение
- •8. Общее понятие об ур, их классификация и значение.
- •7 Теория и. П. Павлова о высшей нервной деятельности
- •§ 2. Предпосылки возникновения учения и.П. Павлова о физиологии высшей нервной деятельности
- •Основные понятия и принципы высшей нервной деятельности
- •Основы теории рефлекторной деятельности
- •Сущность павловского учения состоит не в одностороннем воздействии среды на организм, а в активном взаимодействии.
- •8 Механизм образования временной связи по павлову
- •9 Сравнительный анализ понятий инстинкт и бу
- •11 Представление о структуре поведенческого акта в свете рефлекторной теории
- •12 Теория функциональных систем анохина
- •13 Теории мотивации
- •14 Мотивации. Её виды
- •15 Виды и функции эмоций
- •16 Механизмы формирования эмоциональных состояний
- •Физиологические механизмы формирования эмоций
- •Теории эмоциональных состояний
- •17 Сигнальные системы человека
- •Вторая сигнальная система как отличительная особенность человека
- •18 Специфика 2 сигнальной системы
- •19 Речь, механизмы формирования речевой функции
- •Развитие речи
- •Функции речи
- •20 Механизм формирования условных рефлексов на основе 2 сигнальной системы
- •§ 1. Функциональные основы замыкания временной связи
- •§ 2. Доминанта и условный рефлекс
- •Глава XIII функциональные состояни вторая сигнальная система
- •Вторая сигнальная система представляет новый принцип сигнализации.
- •Взаимодействие первой и второй сигнальных систем
- •21 Индивидуальные различия высшей нервной деятельности человека
- •§ 1. Донервные теории индивидуальности
- •§ 2. Теория и.П. Павлова о типах высшей нервной деятельности
- •22 Теория и.П. Павлова о внд
- •23 Сенсорные системы организма значение и общие закономерности их функционирования
- •24 Зрительный анализатор
- •25 Слуховой анализатор
- •27 Обонятельный анализатор
- •27 Обонятельный анализатор
- •22. Вкусовой и обонятельный анализаторы.
- •28 Тактильный анализатор
- •29. Вестибулярный, двигательный анализаторы.
- •30 Болевой и внутренний анализоторы.
24 Зрительный анализатор
Зрительная сенсорная система чела обеспечивает проведение к мозгу 90% информации о событиях, происходящих во внешней среде, поэтому ее значение трудно переоценить.
Рецепторные клетки системы расположены в сетчатке глазного яблока. Импульсы от фоторецепторов по волокнам зрительного нерва достигают зрительного перекреста, где часть волокон переходит на противоположную сторону. Далее зрительная информация проводится по зрительным трактам к верхнему двухолмию, латеральным коленчатым телам италамусу (подкорковые зрительные центры), а затем по зрительной лучистости в зрительную зону коры затылочных долей мозга (17, 18 и 19 поля Бродмана).
Анатомически орган зрения (organum visus) представлен:
глазным яблоком
вспомогательным аппаратом глаза
Вспомогательный аппарат включает в себя:
мышцы глазного яблока (7 мышц поперечно-полосатых)
Защитный аппарат (брови, ресницы, веки, конъюнктива)
Слезный аппарат
Глазное яблоко вместе со вспомогательным аппаратом расположено в полости глазницы.
I. Стенка глазного яблока состоит из трех оболочек:
роговицей (оптическим отверстием глаза)
склерой (белочной оболочкой)
II. Сосудистая оболочка представлена:
радужкой (пигментированной, с физическим отверстием в центре - зрачком). Радужка содержит сфинктер и дилятатор зрачка (гладкие мышцы, регулирующие величину зрачка в зависимости от освещенности).
Ресничным телом, которое содержит в себе гладкую ресничную мышцу, изменяющую кривизну хрусталика и прикрепляющуюся к его экватору с помощью цинновой связки. Напряжение ресничной мышцы усиливает кривизну хрусталика и укорачивает его фокусное расстояние, расслабление мышцы уменьшает кривизну хрусталика и удлиняет фокусное расстояние. Ресничная мышца – элемент аппарата аккомодации. Аккомодация – способность ясно видеть предметы на разных расстояниях от глаза.
Собственно сосудистой оболочкой (содержит сосуды, питающие структуры глаза).
III. Сетчатка – фоточувствительная оболочка глаза представлена слоем пигментных клеток несколькими слоями нейронов различного типа. Главными функциональными клетками здесь являются фоторецепторы двух типов:
палочки (рецепторы черно-белого сумеречного зрения) – 130 млн.
колбочки (рецепторы цветного дневного зрения) – 7 млн.
Эти клетки преобразуют энергию светового зрения в нервные импульсы.
Слой нервных волокон(I).
Слой ганглиозных клеток.
Слой биполярных клеток.
Слой горизонтальных и амакринных клеток.
Слой палочек и колбочек.
Пигментный слой.
За ними располагаются горизонтальные и амакринные клетки, а следующим слоем расположены биполярные нейроны, которые соединяют палочки и колбочки со следующим слоемганглиозных клеток. Аксоны этих клеток, собираясь в одном месте сетчатки (диск зрительного нерва, слепое пятно), выходят из глазного яблока в составе волокон зрительного нерва.
Палочки и колбочки лежат в сетчатке неравномерно. В переднем отделе – только палочки. В центральной ямке желтого пятна – только колбочки, это место наилучшего видения. В промежуточных областях есть и палочки, и колбочки. В месте выхода зрительного нерва рецепторных клеток нет. В существовании «слепого пятна» можно убедиться с помощьюопыта Мариотта.
В палочках содержится пигмент родопсин, а в колбочках – нодопсин. Под влиянием света пигменты разрушаются и этот химический процесс вызывает в клетках электрический потенциал. Для восстановления родопсина необходим его компонент – витамин А. При недостатке в организме витамина А развивается «куриная слепота» (гемералопия).
Под оболочками глаза содержатся структуры внутреннего ядра, которое представлено тремя светопреломляющими средами глазного яблока:
Водянистая влага (содержится в передней и задней камерах глаза, питает роговицу и определяет уровень внутриглазного давления). Повышение внутриглазного давления – это глаукома.
Хрусталик (имеет форму двояковыпуклой линзы, удерживается цинновой связкой).
Стекловидное тело (заполняет стекловидную камеру глаза, имеет желеобразную консистенцию).
Чувствительность глаза зависит от освещенности. При переходе из темноты в свет наступает временное ослепление. За счет понижения чувствительности фоторецепторов, через некоторое время глаз привыкает к свету (световая адаптация). При переходе со света в темноту также возникает ослепление. Через некоторое время чувствительность фоторецепторов повышается и зрение восстанавливается (темновая адаптация).
Рассмотрение предметов обоими глазами называется бинокулярным зрением. При этом мы видим не два, а один предмет. Это объясняется:
Сведением глазных осей (конвергенцией) при рассмотрении близких объектов и разведении осей (дивергенции) при рассмотрении удаленных объектов.
Восприятием изображения предмета соответственными (идентичными) участками сетчатки правого и левого глаза.
Бинокулярное зрение позволяет определить расстояние до предмета и его объемные формы, а также расширяет угол зрения до 180о. Если слегка надавить сбоку на один глаз, то у человека начинает «двоиться» в глазах, т.к. в этом случае изображения предмета падают на неидентичные участки сетчатки. Это явление называется диспарацией зрения.
Человек обладает цветовым зрением и способен различать большое количество цветов. Существует целый ряд теорий цветового зрения.
Теория Геринга (1872г) и предлагает наличие в колбочках 3 гипотетических пигментов:
бело-черного
красно-зеленого
желто-синего
Распад этих пигментов под действием света позволяет ощущать белый, красный и желтый цвета. При восстановлении пигментов происходит ощущение черного, синего и зеленого цветов.
Наиболее признанной является трехкомпонентная теория Ломоносова-Гельмгольца. Ломоносов предположил (1756г), Юнг сформулировал (1807г), а Гельмгольц развил (1852г) теорию, согласно которой имеются три типа колбочек; воспринимающих красный, зеленый и сине-фиолетовый цвета. Суммация возбуждений от этих клеток в коре мозга дает ощущение того или иного цвета в пределах видимого спектра.
Аномалиями цветового зрения (дальтонизмом) страдают от 4 до 8% мужского населения. Протанопия (красн.), дейтеранопия (зел.), тританопия (сине/фиол.).
Мышцы глазного яблока. Глазное яблоко постоянно находится в движении, даже во сне. Движение обеспечивается поперечно-полосатыми произвольными мышцами, которые прикрепляются к глазному яблоку, это:
Верхняя косая блоковая мышца
Нижняя косая мышца
Верхняя, нижняя, медиальная и латеральная (отводящая) прямые мышцы.
Не связана с глазным яблоком мышца, поднимающая верхнее веко.
Защитный аппарат представлен бровью, веками с ресницами, конъюнктивой, фасциями глазницы и жировым телом глазницы.
Слезный аппарат глаза. Глазное яблоко постоянно омывается слезой до 1 мл в сутки.
Слезный аппарат включает в себя:
Слезную железу (с протоками)
Верхний конъюнктивальный мешок
Слезный ручей
Слезное озеро
Слезные точки
Слезные канальцы
Слезный мешок
Носослезный канал (открывается в нижний носовой ход).
Аномалии рефракции глаза
Существуют две главные аномалии преломления лучей в глазу – дальнозоркость и близорукость. Как правило, они связаны не с недостаточностью преломляющих сред, а с аномалией длины глазного яблока.
В норме изображение рассматриваемого предмета формируется на сетчатке.
Дальнозоркость (гиперметропия) возникает при условии, когда глазное яблоко имеет слишком короткую продольную ось, поэтому параллельные лучи, идущие от далеких предметов, собираются позади сетчатки. На сетчатке же получается круг светорассеяния, т.е. неясное, расплывчатое изображение предмета. Этот недостаток рефракции может быть исправлен путем применения двояковыпуклых стекол или контактных линз, усиливающих преломление лучей.
Близорукость (миопия) возникает при условии, когда ось глаза слишком длинная, поэтому параллельные лучи сходятся в одну точку не на сетчатке, а перед ней. На сетчатке возникает круг светорассеяния. Чтобы ясно видеть вдаль необходимо использовать двояковыпуклые стекла или контактные линзы, рассеивающие лучи, отодвигая изображение предмета на сетчатку.
24. Зрительный анализатор.
Зрительный анализатор состоит из связанных между собой проводящими путями периферического отдела, подкорковых зрительных центров и затылочной области коры больших полушарий. Глаз человека имеет шарообразную форму и распологается в глазнице. Имеет оптическую и рецепторную системы. Оптическая система состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Рецепторная система состоит из сетчатки, которая преобразует оптический сигнал в биоэлектрические реакции и осуществляет первичную обработку зрительной информации. Фоторецепторные клетки сетчатки – колбочки и палочки, обладают разной чувствительностью к свету и цвету.
25. Слуховой анализатор.
Воспринимая периодические колебания воздуха, слуховой анализатор трансформирует механическую энергию этих колебаний в нервное возбуждение, которое субъективно воспроизводится как звуковое ощущение. Периферический отдел слухового анализатора состоит из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки. Среднее ухо содержит цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Стремечко имеет массу 2.5 мг и является самой маленькой косточкой в организме. Внутреннее ухо соединено со средним через овоальное окно и содержит рецепторы двух анализаторов – вестибулярного и слухового.
рительный анализатор
Через зрительную систему человек получает более 80% информации о внешнем мире.
Основные показатели зрения. Зрение характеризуют следующие показатели:
1) диапазон воспринимаемых частот или длин волн света;
2) диапазон интенсивностей световых волн от порога восприятия до болевого порога;
3) пространственная разрешающая способность - острота зрения;
4) временная разрешающая способность - время суммации и критическая частота мельканий;
5) порог чувствительности и адаптация;
6) способность к восприятию цветов;
7) стереоскопия - восприятие глубины.
Глазное яблоко. Периферический отдел зрительного анализатора особенно сложен. Он представлен глазным яблоком. Последнее является системой, преломляющей световые лучи. К преломляющим средам относятся роговица, жидкость передней камеры глаза, хрусталик и стекловидное тело. Радужная оболочка, как диафрагма в фотоаппарате, регулирует поток света.
Сетчатка - с нейроанатомической точки зрения - высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Фоторецепторные клетки - палочки и колбочки - расположены в пигментном слое, наиболее удаленном от хрусталика.
Схема строения глазного яблока (А) и глазное дно в области слепого пятна (Б).
Они повернуты от пучка падающего света таким образом, что их светочувствительные концы спрятаны в промежутках между сильно пигментированными эпителиальными клетками. Эпителиальные пигментные клетки участвуют в метаболизме фоторецепторов и синтезе зрительных пигментов. Все нервные волокна, выходящие из сетчатки, лежат в виде переплетенного пучка на пути света, создавая препятствие на пути его попадания в рецепторы. Кроме того, в том месте, где они выходят их сетчатки по направлению к мозгу, отсутствуют светочувствительные элементы - это так называемое слепое пятно. Свет, попадающий на сетчатку в области слепого пятна не воспринимается элементами сетчатки, поэтому остается "дефект" изображения, проецируемого на сетчатку.
Палочки и колбочки отличаются как структурно, так и функционально. Зрительный пигмент (пурпур - родопсин) - содержится только в палочках. В колбочках находятся другие зрительные пигменты - йодопсин, хлоролаб, эритлаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем колбочка, но не реагирует на свет с разной длиной волны, т.е. она не цветочувствительна. В глазу человека около 6 млн. колбочек и 120 млн. палочек - всего около 130 млн. фоторецепторов. Плотность колбочек наиболее высока в центре сетчатки и падает к периферии. В центре сетчатки, в небольшом ее участке, находятся только колбочки. Этот участок называется центральной ямкой. Здесь плотность колбочек равна 150 тысячам на 1 квадратный миллиметр, поэтому в области центральной ямки острота зрения максимальна. Палочек в центре сетчатки очень мало, их больше на периферии сетчатки, но острота "периферического" зрения при хорошей освещенности невелика. В условиях сумеречного освещения преобладает периферическое зрение, а острота зрения в области центральной ямки падает. Таким образом, колбочки функционируют при ярком свете и выполняют функцию восприятия цвета, палочки воспринимают свет и обеспечивают зрительное восприятие при слабой освещенности.
Строение сетчатки глаза. Вверху - падающий свет; 1 - волокна зрительного нерва; 2 - ганглиоэные клетки; 3 - внутренний синаптический слой; 4 - амакриновые клетки; 5 - биполярные клетки; 6 - горизонтальные клетки; 7 - наружный синаптический слой, 8 - ядра рецепторов; 9 - рецепторы; 10 - пигментный слой эпителиальных клеток
Обработка информации в центрах. Обработка информации в этом анализаторе начинается на периферии - непосредственно на сетчатке - (верхние бугры четверохолмия, затылочная доля коры мозга).
Теория цветоощущения. Все исследователи сходятся на том, что цвет мы определяем на основе рецепции световой волны с помощью трех видов колбочек: один вид наиболее чувствителен к длине волны, дающий ощущение красного, другой вид - синего (фиолетового), а третий вид колбочек дает ощущение желтого (принятое ранее представление о наличии "зеленоузнающих" колбочек подвергнуто ревизии). Еще в прошлом веке физиолог Э. Геринг выдвинул представление о так называемых оппонентных цветах (красный-зеленый, синий-желтый, черный-белый). Оказалось, что его теория хорошо объясняет способность человека различать цвета.
Таким образом, трехкомпонентная теория цветовосприятия (колбочки трех видов) хорошо согласуется с оппонентной теорией.
