
- •Часть 1
- •Содержание
- •Модуль 0 введение в курс теоретических основ электротехники, цели и задачи дисциплины
- •Учебно-информационная модель изучения дисциплины
- •Учебно-информационная модель изучения дисциплины (Окончание)
- •Научно-теоретический материал
- •Модуль 1 основные понятия и законы электрических цепей вводный комментарий к модулю
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Продолжение)
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь основных понятий
- •Основы научно-теоретических знаний по модулю
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 элементы и параметры электрических цепей
- •1.1 Электрическая цепь. Элементы электрической цепи
- •1.2 Электрическая схема и схемы замещения источников энергии
- •1.3 Ток, напряжение, эдс, мощность, энергия
- •Лекция 2 законы электрических цепей и их применение
- •1.4 Закон Ома для участка цепи, содержащего эдс
- •1.5 Законы Кирхгофа
- •1.6 Энергетический баланс в электрической цепи
- •Лекция 3 основные понятия о цепях синусоидального тока
- •1.7 Общие сведения о цепях переменного тока
- •1.8 Величины, характеризующие синусоидальный ток. Генерирование синусоидальной эдс
- •1.9 Среднее и действующее значения синусоидального тока, напряжения, эдс
- •1.10 Изображение синусоидально изменяющихся величин векторами и комплексными числами. Векторные диаграммы
- •1.11 Синусоидальный ток в активном, индуктивном и емкостном элементах
- •Лекция 4 закон ома, законы кирхгофа для цепи синусоидального тока
- •1.12 Синусоидальный ток в цепи с последовательным соединением активного, индуктивного и емкостного элементов
- •1.13 Закон Ома, законы Кирхгофа для цепей синусоидального тока
- •Лекция 5 энергетические процессы в цепях синусоидального тока
- •1.14 Мгновенная мощность и колебания энергии в цепи синусоидального тока
- •1.15 Активная, реактивная и полная мощности. Баланс мощностей
- •1.16 Условие передачи максимальной активной мощности от источника к приемнику
- •Контрольные вопросы и задачи для самостоятельного изучения цепей постоянного тока
- •Контрольные вопросы и задачи для самостоятельного изучения цепей синусоидального тока
- •Материалы к практическим занятиям
- •Практическое занятие 1 Применение закона Ома для расчета токов и напряжений
- •Практическое занятие 2 Применение законов Кирхгофа для расчета цепей постоянного тока
- •Практическое занятие 3 Применение закона Ома, законов Кирхгофа для расчета цепей синусоидального тока
- •Практическое занятие 4 Электрические цепи переменного тока со смешанным соединением элементов
- •Практическое занятие 5 Мощности в цепях переменного напряжения
- •Материалы к лабораторным занятиям
- •Лабораторное занятие 1 Экспериментальная проверка законов Кирхгофа в цепях постоянного тока
- •Лабораторное занятие 2 Исследование цепи переменного напряжения с последовательным соединением приемников
- •Лабораторное занятие 3 Исследование электрической цепи с параллельным и смешанным соединением элементов
- •Лабораторное занятие № 4 Измерение мощности и определение параметров приемника в цепи переменного тока
- •Материалы к управляемой самостоятельной работе по разделу «Методы расчета простых цепей постоянного тока»
- •Материалы к управляемой самостоятельной работе по разделу «Расчет электрической цепи синусоидального тока со смешанным соединением приемников»
- •Образец контрольных заданий по модулю 1
- •Образец контрольных заданий по модулю 1 (Окончание)
- •Модуль 2 методы расчета электрических цепей вводный комментарий к модулю
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь понятий для повторения
- •Основы научно-теоретических знаний
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 методы расчета простых электрических цепей и использование при расчете их свойств и преобразований
- •2.1 Расчет простых цепей при последовательном, параллельном и смешанном соединениях приемников
- •2.1.1 Расчет цепи при последовательном
- •2.1.2 Расчет цепи при параллельном соединении приемников
- •2.1.3 Расчет цепи при смешанном соединении приемников
- •2.2 Преобразование соединения «треугольником» в эквивалентное соединение «звездой» и обратно
- •2.3 Использование при расчете свойств электрических цепей
- •Лекция 2 методы расчета сложных электрических цепей
- •2.4 Метод уравнений Кирхгофа
- •2.5 Метод контурных токов
- •2.6 Метод узловых потенциалов
- •2.7 Метод двух узлов
- •2.8 Метод эквивалентного генератора
- •2.9 Матричный метод расчета линейных электрических цепей (для самостоятельной работы)
- •2.9.1 Геометрия электрических цепей
- •2.9.2 Топологические матрицы схем
- •2.9.3 Законы Кирхгофа в матричной форме
- •2.9.4 Закон Ома в матричной форме
- •2.9.5 Матричные уравнения контурных токов
- •2.9.6 Матричные уравнения узловых потенциалов
- •3.9.7 Порядок расчета электрических цепей матричным методом
- •Контрольные вопросы и задачи для самостоятельного решения
- •Материалы к практическим занятиям
- •Практическое занятие 1 Методы расчета сложных электрических цепей (уравнения Кирхгофа, контурных токов, узловых потенциалов)
- •Практическое занятие 2 Методы расчета сложных электрических цепей — 2-х узлов, эквивалентного генератора
- •Практическое занятие 3 Дополнение к методам расчета сложных цепей
- •Материалы к лабораторным занятиям Лабораторное занятие 1 Исследование свойств электрических цепей
- •Материалы к управляемой самостоятельной работе студентов
- •Образец контрольных заданий по модулю 2
- •Образец контрольных заданий по модулю 2 (Окончание)
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь основных понятий
- •Основы научно-теоретических знаний
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 резонансные явления в электрических цепях
- •3.1 Основные понятия о резонансе в электрических цепях
- •3.2 Резонанс напряжений
- •3.3 Частотные характеристики последовательного колебательного контура
- •3.4 Резонанс токов
- •3.5 Частотные характеристики параллельного контура
- •3.6 Компенсация сдвига фаз
- •3.7 Понятие о резонансе в разветвленных электрических цепях
- •Контрольные вопросы и задачи для самостоятельной работы
- •Вопросы для самоконтроля
- •Лекция 2 цепи со взаимной индуктивностью
- •3.8 Индуктивно-связанные элементы цепи
- •3.9 Электродвижущая сила взаимной индукции
- •3.10 Расчет электрических цепей при наличии индуктивно-связанных элементов
- •3.10.1 Последовательное соединение двух индуктивно-связанных катушек
- •3.10.2 Параллельное соединение двух индуктивно-связанных катушек
- •3.11 Опытное определение взаимной индуктивности
- •3.12 Воздушный трансформатор
- •Контрольные вопросы и задачи для самостоятельного решения
- •Лекция 3 несинусоидальные периодические эдс, напряжения и токи Общие сведения
- •3.12 Разложение периодической несинусоидальной кривой в тригонометрический ряд
- •3.13 Расчет мгновенных значений напряжений и токов в электрических цепях при действии периодических несинусоидальных эдс
- •3.14 Действующие значения периодических несинусоидальных токов, напряжений и эдс
- •3.15 Мощность в цепи несинусоидального тока
- •3.16 Замена несинусоидальных токов и напряжений эквивалентными синусоидальными
- •3.17 Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении
- •Лекция 4 четырехполюсники
- •3.19 Четырехполюсники и их уравнения
- •3.20 Экспериментальное определение коэффициентов четырехполюсника
- •1. Опыт холостого хода при питании со стороны зажимов 1 и 1', . Зажимы 2 и 2' разомкнуты.
- •2. Опыт короткого замыкания при питании со стороны зажимов 1 и 1', . Зажимы 2 и 2' замкнуты накоротко.
- •3. Опыт короткого замыкания при питании со стороны зажимов 2 и 2', . Зажимы 1 и 1' замкнуты накоротко.
- •3.21 Эквивалентные схемы четырехполюсника
- •3.22 Характеристическое сопротивление и коэффициент передачи четырехполюсника
- •3.23 Электрические фильтры
- •Материалы к практическим занятиям
- •Практическое занятие 1 Резонанс в электрических цепях
- •Задачи для самостоятельного решения
- •Индивидуальные задания
- •Практическое занятие 2 Индуктивно-связанные цепи
- •Практическое занятие 3 Цепи с несинусоидальными токами
- •Практическое занятие 4 Мощность в цепи несинусоидального тока
- •Практическое занятие 5 Четырехполюсники
- •Материалы к лабораторным занятиям Лабораторная работа 1 Резонанс токов и компенсация сдвига фаз
- •Лабораторная работа № 2 Исследование режимов работы четырехполюсника
- •Материалы к управляемой самостоятельной работе студентов
- •Образец контрольных заданий по модулю 3
- •Образец контрольных заданий по модулю 3 (Окончание)
- •Задание для усрс
- •Литература Основная
- •Дополнительная
- •Теоретические основы электротехники
- •Часть 1
- •220023, Г. Минск, пр. Независимости, 99, к. 2.
3.4 Резонанс токов
Резонанс токов возможен в цепи синусоидального напряжения, состоящей из двух ветвей, обладающих индуктивностью и емкостью (рисунок 3.6).
Рисунок 3.6 — Схема параллельного колебательного контура
Такую цепь иногда называют параллельным колебательным контуром. Резонанс в такой цепи наступит, когда реактивная проводимость цепи будет равна нулю, b = bC – bL = 0, из чего следует, что условием резонанса будет являться равенство емкостной и индуктивной проводимости: bC = bL. Комплексная полная проводимость первой ветви
Y1
=
,
(3.15)
где
=
bL —
индуктивная проводимость;
=
g1
— активная проводимость первой ветви.
Комплексная полная проводимость второй ветви
Y2
=
,
(3.16)
где
= bC
— индуктивная проводимость;
=
g2
— активная проводимость второй ветви.
Таким образом, в цепи (рисунок 3.6) резонанс наступит при условии, что
=
.
(3.17)
Так как реактивные проводимости ветвей равны, то индуктивная составляющая тока IL первой ветви будет равна емкостной составляющей тока IC второй ветви, и они находятся в противофазе (рисунок 3.7), поэтому резонанс в рассматриваемой цепи носит название резонанса тока.
Рисунок 3.7 — Векторная диаграмма в режиме резонанса токов
При равенстве емкостной и индуктивной проводимости полная проводимость цепи будет равна сумме активных проводимостей ветвей:
.
Угол
сдвига по фазе на входе цепи φ равен
нулю. Согласно закону Ома
,
следовательно, в режиме резонанса токов
ток на входе цепи зависит от суммарной
активной проводимости ветвей
,
т.е.
,
в результате чего ток на входе цепи
принимает минимальное значение. Токи
в ветвях превышают ток на входе. Частоту,
при которой может возникнуть резонанс
токов, определим из условия резонанса
(3.17):
= ;
избавимся от дроби:
;
раскрыв скобки, сгруппируем слагаемые с ω:
;
умножаем
уравнение на
:
.
Так
как
— волновое сопротивление, а
— собственная частота последовательного
колебательного контура, то окончательная
формула для резонансной частоты
параллельного контура примет вид:
ωрез
= ω0
.
(3.18)
Так
как угловая частота выражается
действительным числом, то из выражения
(3.18) следует, что резонанс токов возможен
в том случае, если R1 > ρ
и R2 > ρ
или R1 < ρ
и R2 < ρ.
Если R1 = R2,
то резонансная частота не зависит от
активного сопротивления: ωрез = ω0
Если же R1 = R2 = ρ
=, то под знаком радикала имеет место
неопределенность вида
.
Это случай так называемого безразличного
резонанса. Резонанс токов наблюдается
при любой частоте, так как эквивалентное
сопротивление становится активным, не
зависящим от частоты. В технике связи
используются контуры хорошего и среднего
качества, у которых R1
и R2
значительно меньше ρ. Для таких
высокодобротных контуров, если пренебречь
R1
и R2,
резонансная частота ωрез
равна собственной частоте ω0
последовательного колебательного
контура.
Настроить параллельный колебательный контур в резонансе токов можно путем изменения параметров контура R1, R2, L, C или частоты напряжения источника.
При резонансе токов колебание больших энергий магнитного и электрического полей поддерживается при относительно малом токе в неразветвленной части цепи. Колебания происходят внутри колебательного контура без вовлечения (в идеальном случае) внешнего источника. Это очень важная особенность используется для компенсации угла сдвига по фазе.