
- •Основные понятия
- •Виды случайных событий.
- •Классическое определение вероятности.
- •Сведения из комбинаторики.
- •Геометрическое определение вероятности.
- •Основные теоремы теории вероятности.
- •Полная группа событий.
- •Зависимые и независимые события.
- •Условная вероятность
- •Теорема умножения вероятностей.
- •Вероятность появления хотя бы одного из событий.
- •Формулы полной вероятности.
- •Формула Бейеса.
- •Повторение опытов.
- •Локальная теорема Лапласа.
- •Интегральная теорема Лапласа.
- •Закон распределения случайных величин
- •Закон распределения дискретной случайной величины
- •Свойства функций распределения
- •Частный случай.
- •Нахождение функции распределения по известной функции f(X).
- •Числовые характеристики случайных величин.
- •Свойства математического ожидания.
- •Дисперсия
- •Свойства дисперсии
- •Среднее квадратическое отклонение
- •Математические ожидания и дисперсии для некоторых дискретных и непрерывных распределений. Биноминальное распределение.
- •Распределение Пуасcона.
- •5. Нормальное распределение или закон Гаусса
- •Понятие о моментах распределения
- •Совместное распределение нескольких случайных величин
- •Функция от случайных величин
- •Распределение суммы независимых случайных величины.
- •Коэффициент корреляции.
- •Свойства коэффициента корреляции:
- •Как оценить коэффициент корреляции по данным наблюдения
- •"Закон больших чисел" Неравенство Чебышева.
- •Теорема Чебышева
- •Сущность теоремы Чебышева
- •Значение теоремы для практики.
- •Характеристические функции и их свойства.
Основные теоремы теории вероятности.
Теорема сложения вероятностей несовместных событий.
Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Доказательство: пусть n-общее число возможных элементарных исходов опыта, m-число исходов, благоприятствующих событию A, k-число исходов, благоприятствующих событию B. Изобразим наглядно схему случая.
,
Т.к. события A и B несовместны , то нет таких исходов , которые благоприятствуют и A и B вместе.
Поэтому число исходов , благоприятствующие событию A+B=m+k.
Замечание: для любого числа попарно несовместных событий , теорема формируется аналогично.
Пример.
При стрельбе вероятность сделать отличный выстрел 0,3 ; хорошо-0,4, какова вероятность сделать выстрел не ниже хорошо Обозначим A-отлично, B-хорошо, C-полученные оценки не ниже хорошо, тогда C=A+B, причем A и B несовместны. По теореме C=0,4+0,3=0,7.
Рассмотренная теорема сложения применима только к несовместным событиям. Это положение очень важно; без него теорема сложения становится неверной, и применение ее приводит к грубым ошибкам.
Например: Пусть два стрелка стреляют в цель одновременно, причем для первого стрелка вероятность попадания в цель равна 0,8, а для второго-0,7. Какова вероятность поражения цели?
Если к решению этой задачи применить рассмотренную выше теорему сложения , то найдем, что искомая вероятность равна 0,8+0,7=1,5- результат явно нелепый, т.к. знаем , что вероятность события не может быть больше 1. К этому неверному ответу пришли потому, что применили теорему к такому случаю, в котором рассматриваются совместные события. Ибо вполне возможно, что оба стрелка поразят цель при одном и том же двойном выстреле.
Теорема сложения вероятностей в общем случае: вероятность суммы событий равна сумме вероятностей минус вероятность произведения этих событий.
P(A+B)=P(A)+P(B)-P(AB)
Доказательство:
Пусть имеется n-исходов , которые благоприятствуют событию A, k-событию B, l -исходов событию AB, сумме благоприятствуют (m+k)-l
Если A и B несовместные события , то P(AB)=0
Полная группа событий.
Совокупность единственно возможных событий опыта называется полной группой событий. Пусть события A1 , A2 , , An образуют полную группу .
Следствие : Сумма вероятностей событий , образующих полную группу равна 1.
Доказательство:
Применяя теорему и учитывая , что любые 2 события полной группы несовместны и сумма этих событий - событие достоверное, мы получаем доказываемое следствие.
P(A1 + A2+ + An )=1,
P(A1)+P(A2)++P(An)=1,
Два единственно возможных события , образующих полную группу, называют противоположными.
Противоположными событиями являются например, выпадение герба и выпадение цифры при бросании монеты; попадание и промах при стрельбе в цель; событие "день дождливый" и "день ясный"; события "3 дня подряд шел снег" и " хотя бы в один из 3-х дней снега не было".
Следствие: Сумма вероятностей противоположных событий равна 1.
=1
Переход
к противоположному событию нередко
облегчает вычисление вероятности. На
практике весьма часто оказывается легче
вычислить вероятность противоположного
события
, чем вероятность прямого события A. В
этих случаях вычисляют вероятность
,
затем находят
.
Вероятности противоположных событий принято обозначать p и q, следовательно p+q=1.
Пример.
Найти вероятность того, что при стрельбе в мишень , состоящую из центрального круга и 2-х концентрируемых колец, стрелок не попадет в мишень, если он производит 1 выстрел. Вероятности попадания в круг и кольца равна 0,2:0,15=0,1
Пусть
событие A-
непопадание,
-
попадание, тогда вероятность попадания
равна сумме и равна 0,45, а искомая
вероятность равна 1-0,45=0,55.