Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции теории вероятности (преп. Лашин Т.Б.).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
977.41 Кб
Скачать

Распределение суммы независимых случайных величины.

Пусть х и у – дискретные случайные величины. Суммы случайных величин – новая случайная величина, которая принимает все значения вида xi + yj с вероятностями Pij как произведение вероятностей на Pij(x = xi+y = yj) = P(x = xi) = P(y = yj)(x = xi)

Если случайные величины х и у независимы то Pij = Pi Pj

Пример: Пусть неизвестные случайные величины даны:

z = x + y

x

-1

0

1

P

0,2

0,3

0,5

y

1

2

3

P

0,2

0,4

0,4

x

0

1

2

3

4

P

0,04

0,14

0,3

0,32

0,2

x

y

x+y

P

1

-1

1

0

0,04

2

0

1

1

0,06

3

1

1

2

0,1

4

-1

2

1

0,08

5

0

2

2

0,12

6

1

2

3

0,2

7

-1

3

2

0,08

8

0

3

3

0,12

9

1

3

4

0,2

П усть х и у непрерывные независимые случайные величины плотности распределения составляющие х fx(x) fy(y) закон распределения суммы х + у =z по определению F(z) – это вероятность того, что F(z) = P(z<z) построим прямую

x + y = z

;

Закон распределения суммы независимых случайных величин называется композицией их знаков распределения. Интегралы в правой части называются свертной функцией плотности распределения составляющих, обозначаются *.

Корреляционные зависимости

Две случайные величины х и у находятся в корреляционной зависимости, если изменение одной из величин влечет за собой изменение закона распределения другой. Для характеристики зависимости между случайными величинами вводят понятие корреляционного момента или ковариации. Корреляционным моментом случайной величины х и у называется математическое ожидание произведения отклонений этих величин от их математических ожиданий

,

Для дискретной случайной величины (отношение) ковариация вычисляется

(1)

(2) (3)

Для непрерывных случайных величин

(4)

(5)

(6)

Из формулы (4) можно получить более простую формулу.

Получим

(7)

Теорема №1 Если случайные величины х и у независимы то их cov(x;y)=0

Доказательство: для непрерывной величины.

в формуле 4 заменим

центральный момент первого порядка равен нулю, следовательно и выражение равно нулю. Для независимых случайных величин необходимо чтобы cov=0, но обратно не верно.

Если ковариация двух случайных величин отлична от нуля - это есть признак зависимости между ними. cov характеризует не только зависимость величинами , но и их рассеивание. Если одна из величин весьма мало отклоняется от своего математического ожидания , то есть почти неслучайно, то cov – будет мала, какой бы тесной зависимостью не были бы связаны эти величины. Поэтому между случайными величинами вводят безразмерный коэффициент корреляции.