Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции теории вероятности (преп. Лашин Т.Б.).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
977.41 Кб
Скачать

Свойства дисперсии

  1. Дисперсия постоянной равна 0.

Доказательство D[с]=0

D[с]=M[c2]-M2[c]=c2-c2=0

2. Постоянный множитель можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство:

D[cx]=c2D[x]

D[cx]-M[c2x2]-M2[cx]=c2M[x2]-c2M[x]=c2([M[x]2-M[x]])=c2D[x]

3. Дисперсия суммы независимых случайных величин

D[х+у]=D[х]+D[у]

D[х+у] = М[х+у]22[х+у] = М[х2+2ху+у2]-(М[х]2+М[у]2)= М[х2]+М[2ху]+ М[у2]-М2[х]-М2[у] - М[2ху]= М[х2]-М2[х]+М[у2]-М2[у]=D[х]+ D[у].

Заметим, теорема обобщается на любое число взаимно независимых слагаемых. По определению следует, что дисперсия есть неотрицательное число и имеет квадратичную размерность.

Пример.

Найти дисперсию случайной величины , плотность распределения которой задана

;

;

Пример № 2.

Число очков, выбиваемых при одном выстреле из 2-х стрелков, подчиняется следующему распределению:

x1

1

2

3

Р

0,3

0,2

0,5

x2

1

2

3

Р

0,1

0,6

0,3

Найти дисперсию случайных величин x1 и x2.

M[x1]=0,3+0,4+1,5=2,2;

M[x2]=0,1+1,2+0,9=2,2;

D[x1+x2]=D[x1]+D[x2]=M[x12]-M2[x1]+M[x22]-M2[x1];

x12

1

11

9

Р

0,3

0,2

0,5

x22

1

4

9

Р

0,1

0,6

0,3

M[x12]=0,3+0,8+4,5=5,6;

M[x22]=0,1+2,4+2,7=5,2;

D[x1+x2]=5,6-4,84+5,2-4,84=10,8-9,68=1,12.

D[x1]=0,76;

D[x2]=0,36.

Роль математического ожидания и дисперсии на практике

Пример 1: Если нужно сравнить две марки стали по уровню ударной вязкости , что достаточно для каждой марки стали вычислить математическое ожидание ударной вязкости. Лучшей будет та марка стали, у которой математическое ожидание окажется выше

Пример 2: При одинаковом значении математического ожидания более качественным является стальной лист, имеющий минимальный разброс механических свойств. Тот лист лучше, у которого меньше значение дисперсии, т.е. меньше разброс механических свойств.

Среднее квадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относятся среднее квадратическое отклонение , определяемое по формуле:

Дисперсия квадрата совпадает с размерностью х- средним квадратическим отклонением.

Мода и медиана

Определение: Модой дискретной случайной величины называется ее наиболее вероятное значение.

Геометрически мода является абсциссой в точке кривой распределения или полигона распределения. Ордината которой max-на. В общем случае мода и математическое ожидание не совпадают.

Модой непрерывной случайной величины называется то ее значение, при котором плотность распределения f(x) – максимальна. В частном случае, когда распределение является симметричным и имеет моду , и существует математическое ожидание; то оно совпадает с модой и с центром симметрии распределения.

Медианой непрерывной случайной величины называется такое ее значение, для которого одинаково вероятно окажется ли случайная величина меньше либо больше медианы.

.

Геометрически медиана – абсцисса точки, в которой площадь ограниченной кривой распределения делится пополам. В случае симметричного распределения, имеющего моду, медиана совпадает с математическим ожиданием и модой.