
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
22.3. Метод Фаянса
Образующиеся в процессе титрования галогениды серебра склонны к образованию коллоидов (см. § 5.5). На использовании коллоидных свойств галогенидов серебра основано применение так называемых адсорбционных индикаторов. В качестве таких индикаторов в методе Фаянса применяют флюоресцеин и эозин. Флюоресцеин используется при определении хлоридов, бромидов, йодидов и роданидов, эозин — только при титровании бромидов, йодидов и тиоцианатов.
Флюоресцеин и эозин представляют собой слабые органические кислоты HInd, которые при диссоциации распадаются на ионы Н+ и Ind-. Если к раствору NaCl приливать раствор AgNO3, то образующийся осадок AgCl преимущественно будет адсорбировать те ионы, которые входят в состав осадка, т.е. хлорид-ионы. В этом случае частицы AgCl будут заряжаться отрицательно и окрашенная форма флюоресцеина Ind- адсорбироваться не может. Когда достигается эквивалентная точка, то все хлорид-ионы связываются в осадок AgCl и появляется избыток ионов серебра Ag+. Ионы серебра адсорбируются на частице AgCl и частица приобретает положительный заряд. Анион индикатора адсорбируется и появляется окраска.
На этих свойствах осадка основано применение индикаторов флюоресцеина и эозина. В эквивалентной точке поверхность осадка в присутствии флюоресцеина окрашивается в розовый цвет, в присутствии эозина — в красно-фиолетовый цвет.
Эозин нельзя применять при титровании хлоридов. Он является более сильной органической кислотой, чем флюоресцеин, поэтому адсорбируется на поверхности AgCl раньше Сl- - ионов и осадок задолго до конца титрования приобретает красно-фиолетовый цвет. Эозин используется только при титровании бромидов, йодидов и тиоцианатов, в случае которых этого явления не происходит. Эозин применяют в виде эозината натрия — красного кристаллического порошка, растворимого в воде.
Титрование по методу Фаянса проводится в нейтральной или слабокислой среде. В щелочной среде образуется гидроксид серебра AgOH. Вблизи эквивалентной точки для увеличения поверхности осадка содержимое колбы сильно перемешивают. Нельзя проводить титрование на прямом солнечном свету, так как красный цвет осадка быстро переходит в серый, а затем в черный.
При анализе фармацевтических препаратов метод Фаянса применяют для определения йодидов с индикатором эозинатом натрия.
Лабораторная работа 1. Определение содержания хлорида натрия в образце.
Цель работы. Приобрести навыки титрования хлоридов в присутствии адсорбционных индикаторов.
Оборудование. См. лабораторную работу 1, § 22.2.
Реактивы. Хлорид натрия, 0,05000 н. раствор AgNO3, раствор флюоресцеина с его массовой долей 0,1%, раствор крахмала с его массовой долей 0,5 %.
Выполнение работы. Рассчитанную навеску хлорида натрия (примерно 0,3 г) взвешивают на аналитических весах и количественно переносят в мерную колбу на 100 мл. Растворяют навеску в небольшом количестве воды и доводят раствор до метки. С помощью пипетки Мора по 10 мл приготовленного раствора вносят в три колбы для титрования и добавляют по 8—10 капель раствора индикатора. При энергичном перемешивании полученный раствор титруют раствором AgNO3 до перехода окраски индикатора из зеленой в розовую. Для более резкого перехода окраски можно перед титрованием добавить в раствор 5 мл раствора крахмала.
Обработка результатов эксперимента. См. лабораторную работу 2, § 22.2.
Лабораторная работа 2. Определение йодида калия в образце.
Цель работы. Приобрести навыки титрования с индикатором эозином.
Оборудование. См. лабораторную работу 1, § 22.2.
Реактивы. Раствор уксусной кислоты с массовой долей ее 5 %, раствор эозина или эозината натрия с массовой долей его 0,1 %, йодид калия, 0,05000 н. раствор AgNO3.
Выполнение работы. Рассчитанную навеску йодида калия взвешивают на аналитических весах и растворяют в мерной колбе на 100 мл. В три колбы для титрования вносят с помощью пипетки Мора по 10 мл полученного раствора, добавляют по 5 мл раствора уксусной кислоты, 5-6 капель индикатора и титруют раствором AgNO3 до перехода окраски из розовой до красно-фиолетовой.
Обработка результатов эксперимента. См. лабораторную работу 2, § 22.2.