
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
20.4. Кривые кислотно-основного титрования. Выбор индикатора
В § 20.2. было показано, что значение рН в точке эквивалентности определяется прежде всего природой реагирующих кислоты и основания. Например, титрование сильной кислоты сильным основанием следует закончить в нейтральной среде (рНт.э. =7). Эксперимент показывает, что все индикаторы, имеющие рТ от 4,0 до 10,0 резко изменяют свою окраску в нейтральной среде. Для выбора индикатора строят кривые титрования.
Кривые кислотно-основного титрования выражают зависимость изменения рН среды от объема добавленного в процессе титрования титранта.
На примере титрования сильной кислоты щелочью покажем, как, зная вид кривой титрования, выбирают индикатор для определения конца титрования.
Прежде всего, рассчитаем значение рН в различные моменты титрования и построим кривую титрования.
Предположим, что 10,0 мл раствора НСl с концентрацией 0,1 моль/л титруют раствором NaOH той же концентрации. Для простоты будем пренебрегать разбавлением титруемого раствора в ходе титрования. Поскольку растворы взяты в одинаковых концентрациях, то 1 мл кислоты эквивалентен 1 мл щелочи (потсоличеству растворенного вещества эквивалента).
До начала титрования [Н+] = 0,1 моль/л, следовательно, рН = 1. По мере титрования концентрация ионов Н+ убывает, а концентрация ионов ОН- возрастает. Если добавить 9,0 мл щелочи, то непрореагировавшей кислоты останется 1,0 мл, т.е. ее концентрация уменьшится в 10 раз и станет равной 10-2 моль/л, так что рН = 2.
Если к титруемому раствору прибавить 9,9 мл NaOH, то концентрация свободной НСl уменьшится еще в 10 раз, т.е. до 10-3 моль/л, а рН раствора возрастет приблизительно до 3. При добавлении 9,99 мл NaOH неоттитрованный остаток НСl составит 0,01 мл, что соответствует [Н+] = 10-4 моль/л (рН = 4). Наконец,
Таблица 20.1. Изменение рН при титровании 10,0 мл 0,1 н. раствора сильной кислоты 0,1 н. раствором сильного основания*
Прибавлено NaOH, мл |
Объем непрореагировавшей кислоты, мл |
С(НСl), моль/л |
C(NaOH), моль/л |
[Н-], моль/л |
рpН |
0,00 |
10,00 |
1 • 10-1 |
- |
1 • 10-1 |
Н1 |
9,00 |
1,00 |
1 • 10-2 |
- |
1 • 10-2 |
22 |
9,90 |
0,10 |
1 • 10-3 |
|
1 • 10-3 |
33 |
9,99 |
0,01 |
1 • 10-4 |
- |
1 • 10-4 |
44 |
10,00 |
Точка эквивалентности |
- |
1 • 10-7 |
77 |
|
10,01 |
- |
- |
1 • 10-4 |
1 • 10-10 |
110 |
10,10 |
- |
- |
1 • 10-3 |
1 • 10-11 |
111 |
11,00 |
- |
- |
1 • 10-2 |
1 • 10-12 |
112 |
20,00 |
- |
- |
1-10-1 |
1 • 10-13 |
113 |
_____________
* В результате изменения объема раствора концентрации НСl и NaOH вблизи точки эквивалентности оказываются примерно в 2 раза меньше, чем табличные. Значение рН в этих точках в действительности выше, а рОН - ниже приблизительно на 0,3 ед. рН. Например, когда добавлено 9,00 мл щелочи и общий объем раствора составит 19,00 мл, тогда концентрация кислоты и рН раствора равные соответственно С(НСl) = 0,1 • 1/19 - 0,0053, [Н+] = 5,3 • 10-3 моль/л, рН = 2,28.
при добавлении 10,0 мл щелочи достигается точка эквивалентности и рН = 7. В результате реакции нейтрализации образуется соль хлорид натрия, не подвергающаяся гидролизу, а концентрация ионов Н+ и ОН- будет одинаковой. При дальнейшем добавлении щелочи (свыше 10 мл) рН продолжает повышаться, причем концентрация ОН- - ионов будет увеличиваться в том же порядке, как происходило уменьшение концентрации водородных ионов Н+. При избытке 0,01 мл щелочи (т.е. добавлено 10,01 мл NaOH) концентрация ее в растворе составит примерно 10-4 моль/л, что соответствует рОН 4 и рН 10. Если добавить 0,1 мл щелочи, то ее концентрация в растворе увеличится в 10 раз и станет 10-3 моль/л, а рОН = 3 и, соответственно, рН = 11. Рассуждая точно так же, можно найти положение нескольких следующих точек. Результаты титрования вплоть до 100 % - ного избытка NaOH представлены в табл. 20.1, а сама кривая показана на рис. 20.1.
Рис. 20.1. Кривая титрования 10 мл 0,1 н. раствора сильной кислоты 0,1 н. раствором сильного основания
Из рассмотрения кривой титрования (см. рис. 20.1) видно, что вблизи точки эквивалентности наблюдается резкий скачок рН среды, составляющий 6 ед. рН, что соответствует изменению концентрации ионов водорода в 106 раз, т.е. в миллион раз. Этот скачок вызывается добавлением 0,02 мл раствора щелочи: от 9,99 до 10,01 мл. Вместе с тем прибавление в раствор кислоты почти всего требуемого объема щелочи (9,99 мл, что составляет 99,9 %) приводит к изменению рН от 1 до 4, что соответствует изменению [Н+] всего в тысячу раз.
Из данных табл. 20.1 и рис. 20.1 можно сделать следующие важные для выбора индикатора выводы.
1. При титровании сильной кислоты сильным основанием точка эквивалентности совпадает с точкой нейтральности (рН 7) и ветви кривой титрования симметричны относительно линии нейтральности.
2. Вблизи точки эквивалентности наблюдается резкий скачок рН. Его величина зависит от концентрации титруемого раствора и титранта, а также от температуры. С увеличением концентраций реагентов величина скачка рН на кривой титрования растет, а при их понижении уменьшается. Действительно, если С(НСl) = C(NaOH) = 1 моль/л, то с помощью тех же приемов расчета легко показать, что величина скачка рН на кривой титрования составит 8 ед. рН. Если же С(НСl) = C(NaOH) = 0,01 моль/л, то его величина составит 4 ед. рН. С увеличением температуры величина скачка рН на кривой титрования уменьшается, поскольку при этом увеличивается ионное произведение воды (при 298 К Кн2о = 1,0 • 10 • 14, а при 373 К Кн2о = 5,9 • 10-14).
3. Для фиксирования точки эквивалентности при кислотно-основном титровании пригоден любой индикатор, интервал перехода окраски которого лежит в пределах скачка рН на кривой титрования.
Так, для определения точки эквивалентности в рассмотренном выше случае пригоден любой кислотно-основный индикатор, интервал перехода окраски которого лежит в пределах рН 4-10. Разница в результатах титрования в случае применения метилоранжа (рТ = 4) и фенолфталеина (рТ = 9) составит не более 0,02 мл, или 0,2 %.
При титровании слабой кислоты сильным основанием (рис. 20.2) точка эквивалентности смещается с линии нейтральности в щелочную область из-за гидролиза образующейся
Рис. 20.2. Кривая титрования 0,1М раствора уксусной кислоты 0.1М раствором щелочи
в точке эквивалентности соли. Скачок титрования сужается и будет тем уже, чем слабее титруемая кислота. В этом случае из двух упомянутых выше индикаторов может быть использован только фенолфталеин.
При титровании слабого основания сильной кислотой (рис. 20.3) по завершении реакции образуется соль, гидролизующаяся по катиону; точка эквивалентности смещается в кислую область. Для фиксирования точки эквивалентности можно использовать метилоранж, а фенолфталеин непригоден.
При взаимодействии слабой кислоты и слабого основания изменение рН происходит постепенно на протяжении всего процесса титрования, область скачка рН на кривой титрования отсутствует, и точно определить момент эквивалентности невозможно. Поэтому растворы слабых кислот и оснований не используются в качестве титрантов при кислотно-основном титровании.
Соответственно ступенчатой ионизации многоосновных кислот их нейтрализация протекает также по ступеням.
Рис. 20.3. Кривая титрования 0,1М раствора аммиака 0,1М раствором соляной кислоты
Например, при титровании раствора Н3РО4 щелочью протекают следующие реакции:
1) Н3РО4 + NaOH = NaH2PO4 + Н2О (рНт.э. = 4,66);
2) NaH2PO4 + NaOH = Na2HPO4 + Н2О (рНт.э. = 9,94);
3) NaH2PO4 + NaOH = Na3PO4 + H2O (рНт.э. ≈ 12).
Поэтому кривая титрования Н3РО4 щелочью имеет не одну, а три точки эквивалентности и только два четких скачка рН (для реакций 1) и 2)). Первая точка эквивалентности может быть определена с помощью метилоранжа или метилового красного, вторая — с помощью фенолфталеина (более точно — тимолфталеина). Из приведенных рассуждений следует, что в присутствии метилоранжа Н3РО4 титруется как кислота одноосновная, т.е. в соответствии с первым уравнением. В этом случае фактор эквивалентности ее равен 1. В отличие от этого с фенолфталеином фосфорная кислота титруется в соответствии с уравнением
Н3РО4 + 2NaOH = Na2HPO4 + 2Н2О,
т.е. ведет себя как кислота двухосновная ( fэкв =1/2). Непосредственно оттитровать Н3РО4 как кислоту трехосновную, т.е. по уравнению
Н3РО4 + 3NaOH = Na3PO4 + 3Н2О
ни с одним индикатором нельзя, так как третья константа ионизации фосфорной кислоты очень мала (К3 = 2,2 • 10-13), что приводит к исчезновению третьего скачка рН на кривой титрования.
При титровании солей слабых многоосновных кислот (например, Na2CO3, а также смесей кислот, значительно различающихся по силе (например, сильной — соляной и слабой — уксусной), на кривой титрования также фиксируется несколько точек эквивалентности.
Пригодность того или иного индикатора в каждом конкретном случае можно характеризовать индикаторной ошибкой титрования, возникающей из-за несовпадения рТ и рН в точке эквивалентности. При титровании сильной кислоты сильным основанием и наоборот ошибка может быть водородной или гидроксидной. Водородная или Н+ -ошибка возникает при рТ < 7, т.е. когда при титровании сильной кислоты щелочью в растворе после окончания титрования остается некоторое количество неоттитрованной кислоты. Для гидроксидной ошибки при титровании сильной кислоты характерно рТ > 7, что указывает на избыточное содержание в растворе сильного основания по сравнению с эквивалентным. Например, при титровании слабой уксусной кислоты рН в точке эквивалентности равно 8,9, поэтому необходимо применить индикатор с рТ = 9,0, т.е. лучше титровать в присутствии фенолфталеина. Если вместо фенолфталеина взять индикатор тимолфталеин с рТ=10,0, то этот индикатор изменит цвет при рН 10,0 и раствор будет перетитрован.
Ошибка титрования вызывается и тем, что переход индикатора из кислотной формы в основную или наоборот требует расхода реагента. В связи с этим при титровании стараются применять минимальное количество индикатора.
При увеличении температуры меняется интервал перехода окраски индикатора. Поэтому при кислотно-основном титровании все определения проводят при комнатной температуре.
Ошибки при титровании возникают также в присутствии солей и веществ, легко переходящих в коллоидное состояние, а также в присутствии некоторых органических растворителей.