
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
20.3. Кислотно-основные индикаторы
Индикаторы кислотно-основного титрования - это сложные органические вещества, которые способны изменять свою окраску в зависимости от рН раствора. Известно около 200 кислотно-основных индикаторов, относящихся к различным классам органических соединений. Наиболее широкое распространение получили индикаторы группы трифенилметана (фенолфталеин, тимолфталеин, феноловый красный, кристаллический фиолетовый и др.) и группы азосоединений (метилоранж, метиловый красный и др.). Кроме индивидуальных, для титрования часто применяют смешанные индикаторы, представляющие собой смеси двух, трех или более индикаторов, которые дают более четкие переходы окраски при изменении рН растворов.
Механизм изменения окраски индикаторов при изменении кислотности среды обычно рассматривается с позиций ионной и хромофорной теорий.
Согласно ионной (протолитической) теории, кислотно-основные индикаторы представляют собой слабые органические кислоты HInd или основания IndOH, которые растворах могут существовать в ионизированной и не-ионизированной формах. Эти формы окрашены в разный цвет и находятся в равновесии, зависящем от рН среды. Например, свойства кислотных индикаторов характеризуются следующим равновесием:
Изменение кислотности раствора приводит к смещению равновесия диссоциации либо вправо (увеличение рН), либо влево (уменьшение рН). Это сопровождается изменением соотношения молекулярной и ионной форм индикатора и, следовательно, изменением окраски раствора.
Хромофорная теория кислотно-основных индикаторов связывает изменение их окраски с изменением строения индикаторов в результате внутримолекулярной перегруппировки. Свое название эта теория получила от того, что окраска органических соединений приписывается наличию в них особых атомных групп (обычно содержащих кратные связи), называемых хромофорами.
К хромофорам относятся нитрогруппа
способная превращаться в группу НО – N =, азогруппа - N = N – , переходящая при определенных условиях в группу = N – NH – , несколько близко расположенных друг к другу карбонильных групп > С = О или двойных связей и т.п. Очень важным хромофором является хиноидная система, которая может в определенных условиях образоваться из бензольной по следующей схеме:
Вызванная хромофорами окраска соединения усиливается присутствием в молекуле групп, называемых ауксохромами. Важнейшими ауксохромами являются группы -ОН и -NH2, а также их производные, содержащие различные радикалы, например группы - ОСН3, - N(CH3)2, - N(C2H5)2 и т.д. В отличие от хромофоров ауксохромы сами по себе не способны придавать окраску соединению, но, присутствуя совместно с хромофорами, они усиливают действие последних.
Согласно хромофорной теории изменение окраски индикаторов происходит в результате внутримолекулярной перегруппировки. Если при этом в индикаторе возникают (или исчезают) группы (хромофоры, ауксохромы), то окраска индикатора изменяется. Следует отметить, что превращение изомерных форм друг в друга у индикаторов - процесс обратимый. Обратимая изомерия называется таутомерией, а соответствующие изомеры - таутомерами. В растворе любого кислотно-основного индикатора согласно хромофорной теории присутствуют его различные таутомерные формы, которые находятся в равновесии друг с другом и обладают разной окраской.
Ионная и хромофорная теории совершенно различно освещают процессы, происходящие с индикаторами. Однако они не исключают, а, наоборот, очень удачно дополняют друг друга, так как ионизация молекул индикатора обычно предшествует внутримолекулярной перегруппировке.
В качестве примера рассмотрим механизм изменения окраски метилоранжа при переходе от кислой к щелочной среде.
Молекулы метилоранжа содержат одновременно кислотную -SO3H и основную -N(CH3)2 группы. При диссоциации метилоранжа образуется диполярный ион розового цвета из-за присутствия хромофора - хиноидной системы:
Этот ион устойчив в кислой среде, а при подщелачивании раствора изменяет свое строение, что сопровождается переходом розовой окраски в желтую вследствие изменения хиноидной системы и появления нового хромофора - азо-группы: окраску индикатора, обусловленную обоими хромофорами, усиливает присутствие ауксохрома -N(CH3)2.
При изменении рН раствора все кислотно-основные индикаторы изменяют свою окраску не скачкообразно, а плавно, т.е. в определенном интервале значений рН, называемом интервалом перехода окраски индикатора ∆рН. Каждый индикатор имеет свой интервал перехода, который зависит от особенностей структуры индикатора и его способности к ионизации. Интервал перехода окраски индикатора определяется выражением
∆рН = рК±1, (20.1)
где рК - показатель константы ионизации (диссоциации) слабокислотного или слабоосновного индикатора.
Для большинства кислотно-основных индикаторов интервал перехода окраски составляет примерно 2 ед. рН: от рН1 = рК - 1 до рН2 = рК + 1.
Кроме интервала перехода окраски, индикаторы характеризуют показателем титрования рТ. Показатель титрования рТ - это значение рН в пределах интервала перехода окраски, при котором наблюдается наиболее резкое изменение цвета индикатора и заканчивается титрование. Показатель титрования pT обычно равен рН раствора, при котором концентрации обоих окрашенных форм индикатора равны, т.е. [HInd] = [Ind-] и тогда соблюдается равенство: рТ = рН = рК.
В химических справочниках обычно указываются окраски кислотной и основной форм индикатора, значения интервала перехода окраски и методика приготовления раствора индикатора. Например, интервал перехода окраски индикатора метилоранжа (метиловый оранжевый) находится в пределах рН от 3,1 до 4,4. При рН > 4,4 метилоранж - желтый, при рН < 3,1 - розовый (см. табл. 2.1), в интервале от рН 3,1 до рН 4,4 окраска его постепенно изменяется из розовой в желтую. Показатель титрования метилоранжа равен 4,0. Другой индикатор - фенолфталеин - при рН < 8 бесцветный, в интервале рН от 8,0 до 10,0 окраска из бледно-розовой постепенно переходит в ярко-малиновую. Показатель титрования для фенолфталеина равен 9. Интервал перехода окраски индикатора метилового красного от рН 4,4 до рН 6,2. При рН < 4,4 этот индикатор имеет красный цвет, при рН > 6,2 - желтый. Показатель титрования для этого индикатора равен 5.
Индикаторы применяют либо в виде растворов, несколько капель которых добавляют к испытуемому раствору, либо в виде индикаторных реактивных бумаг, представляющих собой кусочки фильтровальной бумаги, пропитанные раствором индикатора и высушенные. При определении рН на индикаторную бумагу наносят несколько капель испытуемого раствора и по окраске бумаги судят (приближенно) о его значении.
Различные индикаторы изменяют свой цвет при разных значениях рН, что позволяет подобрать во всем диапазоне шкалы подходящий индикатор или индикаторную бумагу. Часто применяют универсальные индикаторы -смеси индикаторов, приобретающих различный цвет при нескольких значениях рН, что позволяет ориентировочно судить о его значении. Универсальные бумаги на обложке имеют сравнительную цветную шкалу значений рН.