
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
19.2. Способы выражения состава раствора
В титриметрическом анализе для выражения состава раствора используют молярную концентрацию (см. § 1.1) и молярную концентрацию эквивалента.
Молярная концентрация эквивалента (нормальная концентрация, обозначается С(1/z • X) или Сн) — это количество вещества эквивалента, которое содержится в одном литре раствора. Рассчитывается как отношение количества вещества эквивалента v(1/zX) в растворе к объему этого раствора (V):
Единицы измерения молярной концентрации эквивалента такие же, как и для молярной концентрации. Чаще всего применяется единица измерения моль/л. При одинаковой молярной концентрации эквивалента равные объемы растворов различных веществ содержат одинаковое число эквивалентов этих веществ.
При записи молярной концентрации эквивалента, например для КМnО4 в полуреакции МnО4 + 8Н+ + 5ē → Мn2+ + 4Н2О, используют такие формы: С(1/5КМnО4) = 0,1 моль/л, 0,1 н. или 0,1 N раствор КМnО4 (децинормальный раствор КМnО4) 0,1 н. или 0,1 N КМnО4. Применять буквы «М», «н» и «N» для обозначения единиц концентрации растворов неправильно. Например, нельзя писать C(H2SO4) = 0,1 М или C(1/2H2SO4) = 0,1 н.
Если численные значения молярной концентрации и нормальности совпадают (это наблюдается в тех случаях, когда fэкв(Х) = 1), то употребляют слово «молярный». Например, для 1М раствора КОН не следует применять выражение 1 н. КОН, а нужно использовать выражение 1М КОН.
Количественная связь между молярной концентрацией вещества и его молярной концентрацией эквивалента выводится на основании уравнения (1.1) и (19.6). Разделив уравнение (1.1) на уравнение (19.6), получим
fэкв(Х) = С(Х)/ (1/zX) (19.7)
Количество вещества X, а следовательно, и его масса в объеме (л) раствора могут быть рассчитаны как из молярной концентрации раствора, так и из его нормальности, исходя из уравнений (1.1, 19.6, 19.7).
К реакциям, протекающим в стехиометрических отношениях, применим закон эквивалентов. Если реакция проведена до конца, число эквивалентов определяемого компонента равно числу эквивалентов реагента. Иными словами, моль эквивалентов любой кислоты способен нейтрализовать моль эквивалентов любого основания. Например, если реакция между серной кислотой и гидроксидом натрия идет до конца по уравнению
H2SO4 + 2NaOH = Na2SO4 + 2Н2О
и концентрация реагирующих растворов выражается молярной концентрацией эквивалента, то для расчетов пользуются соотношением
C(1/2H2SO4) • F(H2SO4) = C(NaOH) (19.8)
где C(1/2H2SO4) и C(NaOH) - нормальности растворов; V(H2SO4) и V(NaOH) - объемы растворов. Соотношение (19.8) представляет собой математическую запись закона эквивалентов и позволяет рассчитывать концентрации и объемы реагирующих веществ.
Одним из способов выражения состава раствора является титр. Титр Т(Х) - это масса вещества (в граммах), которая содержится в 1 мл раствора. Титр рассчитывается как отношение массы вещества X к объему V его раствора в миллилитрах:
Т(Х) = m(X)/V (19.9)
Связь между молярной концентрацией С(Х), молярной концентрацией эквивалента С( 1/z • Х) и титром Т(Х) устанавливается с помощью уравнений (19.10, 19.11)
Т(Х) = C(X) • M(X)/ 1000 (19.10)
Т(Х) = С( 1/z • Х) • M( 1/z • Х) /1000 (19.11)
Вычислениями с помощью титра удобно пользоваться в лабораториях, где выполняют много однотипных анализов. В этом случае концентрацию обозначают числом граммов определяемого вещества, которое соответствует 1 мл рабочего раствора. Так, при титровании гидроксида натрия раствором хлороводородной кислоты можно заранее вычислить, какой массе гидроксида натрия соответствует 1 мл раствора хлороводородной кислоты. Тогда говорят о титре хлороводородной кислоты по гидроксиду натрия и обозначают ТHCl/NaH. Для вычисления массы (т) вещества в этом случае надо умножить титр на объем рабочего раствора, пошедшего на титрование:
т = Vpaб.p. • Трабр./опред. в. (19.12)
Принимая во внимание уравнения (19.10, 19.11), можно выразить титр рабочего раствора по определяемому веществу через молярную концентрацию эквивалента рабочего раствора:
Ттаб.р./опред. в. = Сраб.р • Мопред.в(1/z • Х) . (19.13)
1000
Например: ТНСl/NaOH = C(HCl) • M(NaOH)
1000
Для приготовления растворов определенной концентрации навеску рассчитывают по формуле
т = С( 1/z • Х) • M( 1/z • Х) •V /1000 (19.14)
где С( 1/z • Х) - молярная концентрация эквивалента; M(l/z • X) - молярная масса эквивалента; V- объем приготовленного раствора, мл.