
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
18.3. Осаждение. Влияние различных факторов на образование осадков
Влияние различных факторов на образование осадков подробно рассматривалось в § 5.3. Знание этих факторов необходимо для практического проведения полного осаждения определяемого иона. С этой целью, прежде всего, надо выбрать осадитель, его количество и температуру, при которой проводится осаждение.
Прежде чем приступить к процессу осаждения, подбирают реагент-осадитель. При этом учитывают константу растворимости осадка, значение которой должно находиться в пределах 1 • 10-8 - 1 • 10-12. Желательно, чтобы осадитель осаждал только определяемый ион. Если не удается подобрать такой осадитель, мешающие ионы удерживают прочные комплексы. В качестве осадителя часто используют соединения аммония (гидроксид, карбонат и др.), которые после промывки осадка легко удаляются при прокаливании.
Для полного осаждения осадителя обычно добавляют в 1,5 раза больше, чем необходимо по уравнению реакции. Большее добавление количества осадителя может вызвать растворение осадка.
Следует различать условия осаждения кристаллических и аморфных осадков. В случае образования кристаллических осадков их осаждение проводят из сильно разбавленных растворов разбавленным раствором осадителя, который прибавляют по каплям в начале осаждения. Осаждение ведут из горячих растворов и для образования крупных кристаллов раствор медленно охлаждается до комнатной температуры.
Осаждение аморфных осадков также ведут из горячих растворов, но при быстром добавлении концентрированного раствора осадителя. Для укрупнения коллоидных частиц добавляют электролиты и фильтрование осадка проводят сразу из горячих растворов.
Необходимо проверять полноту осаждения, добавив после образования осадка по стенке стакана 1-2 капли раствора осадителя. Отсутствие помутнения в месте падения капель указывает на полноту осаждения.
18.4. Техника выполнения операций при проведении гравиметрического анализа
1. Отбор средней пробы. Проводится приемами, описанными в § 17.2. Отобранный образец измельчают в ступке, перемешивают и берут навеску для анализа.
2. Взвешивание. На технических весах взвешивают ориентировочно необходимую массу вещества, которую уточняют на аналитических весах. Навеску взвешивают на часовом стекле или в бюксе и высыпают в стакан. Определяют массу пустого часового стекла и бюкса или по разности масс заполненной и пустой посуды определяют величину навески.
3. Растворение навески. Навеску растворяют в дистиллированной воде. При медленном растворении вещества содержимое стакана нагревают на асбестовой сетке или в водяной бане. Необходимо следить за тем, чтобы не происходило бурного выделения газов или сильного кипения.
4. Осаждение проводят в химическом стакане, так как из колбы невозможно полностью извлечь осадок. Условия и приемы осаждения описаны в § 18.3.
5. Фильтрование и промывание осадка. Фильтрование проводят через стеклянные или бумажные беззольные фильтры. Стеклянные фильтры применяют для фильтрования крупнокристаллических, бумажные - для мелкокристаллических и аморфных осадков. Беззольные бумажные фильтры при сжигании дают столь незначительное количество золы (порядка 0,0001 г), что при расчете ее массой пренебрегают. Точная масса золы, образующейся при сжигании таких фильтров, указана на каждой пачке. Беззольные фильтры бывают разного диаметра и различаются по плотности бумаги. Наиболее плотные фильтры обернуты голубой лентой; наименее плотные - черной или красной лентой; средней плотности - белой лентой.
Аморфные осадки фильтруют через фильтры с малой плотностью, кристаллические - со средней и большой плотностью. Выбрав фильтр требуемой плотности и размера, его аккуратно складывают и укладывают так, чтобы он плотно прилегал к воронке, меняя, если надо, угол сгиба фильтра. Фильтр должен не доходить до верхнего края воронки на 5-10 мм. Расправляют фильтр и смачивают водой, затем плотно прижимают его большим пальцем правой руки к стенкам воронки, так чтобы между стеклом и бумагой не оставалось пузырьков воздуха. Неправильно вложенный фильтр замедляет фильтрование. При заполнении фильтра водой до краев она должна стекать тонкой струей и быстро заполнить трубку воронки. Если же вода будет медленно стекать по капле, необходимо сменить фильтр на новый.
Рис. 18.9. Фильтрование через бумажный фильтр
Воронку с фильтром вставляют в кольцо штатива, под которое подставляют стакан для сбора фильтрата (рис. 18.9). При сливании жидкости на фильтр пользуются стеклянной палочкой, которую применяли для перемешивания в процессе осаждения. Палочку вынимают из стакана и держат левой рукой в вертикальном положении над воронкой. Нижний конец палочки не должен касаться жидкости на фильтре. Правой рукой берут стакан с фильтруемой жидкостью, плотно прикладывают носик стакана к палочке и осторожно сливают жидкость так, чтобы прозрачная жидкость над осадком не взмутилась. Не следует заполнять фильтр до краев, а уровень жидкости должен быть ниже края бумаги на 3-5 мм. Каждый раз палочку опускают обратно в стакан и ждут, пока жидкость не стечет с фильтра, затем снова наливают жидкость. Когда большая часть жидкости будет слита с осадка на фильтр и на дне останется осадок с небольшим количеством жидкости, приступают к промыванию осадка путем декантации. Для этого тонкую струю промывной жидкости из промывалки направляют таким образом, чтобы она смыла со стенок стакана приставшие к ним частицы. После этого осадок взмучивают и дают отстояться, пока осадок не соберется на дне стакана и жидкость над осадком не станет почти прозрачной. Жидкость переносят на фильтр. Эту операцию проводят 3-4 раза. Когда промывание декантацией закончено, осадок количественно переносят на фильтр. С этой целью осадок смешивают с промывной жидкостью и раствор вместе с частицами осадка переливают по палочке на фильтр. Частицы, плотно приставшие к стенкам стакана, удаляют потиранием стеклянной палочкой с резиновым наконечником или маленькими кусочками беззольной фильтровальной бумаги, которые затем кладут на фильтр с осадком. Стакан и палочку ополаскивают промывной жидкостью и выливают ее в воронку с осадком. После этого немедленно приступают к промыванию осадка на фильтре.
Промывают осадок с помощью промывалки, направляя струю промывной жидкости так, чтобы струя не падала на осадок с большой силой. Промывают 4—5 раз, каждый раз давая жидкости стечь. После этого проверяют полноту промывания осадка. С этой целью под воронку подставляют пробирку и собирают в ней промывные воды. В промывных водах проверяют присутствие тех ионов, от которых отмывают осадок. Промывание осадка заканчивают, если промывные воды перестают давать положительную реакцию на отмываемые ионы.
Если осадок не будет прокаливаться в муфельной печи, а будет сушиться в сушильном шкафу, его отфильтровывают через стеклянный фильтр под вакуумом.
6. Высушивание и прокаливание осадка. Фильтр с осадком на воронке помещают на 20-30 мин в сушильный шкаф с температурой 90-105 °С. При более высокой температуре фильтр может обуглиться и разрушится при вынимании из воронки. Если фильтр не требуется сжечь в тот же день, его можно не помещать в сушильный шкаф, так как он высохнет и при комнатной температуре.
После подсушивания фильтр с осадком помещают в фарфоровый или платиновый тигель. Приступая к прокаливанию, необходимо знать массу пустого тигля и иметь уверенность в том, что масса тигля при прокаливании не изменится. Для этого тигель предварительно доводят до постоянной массы, т.е. прокаливают в тех самых условиях, при которых в дальнейшем будут прокаливать осадок.
Рис. 18.10. Фарфоровый треугольник с тиглем на кольце штатива
Температура и время прокаливания осадка зависят от его состава и количества. При прокаливании осадка на горелке тигель с осадком вставляют в фарфоровый треугольник и кладут треугольник на кольцо штатива (рис. 18.10). Нагревание проводят очень осторожно и не допускают воспламенения фильтра. Иногда полное прокаливание осадка на обычной газовой горелке не достигается, тогда осадок прокаливают в муфельной печи. После прокаливания тигель с осадком охлаждают в эксикаторе и взвешивают. Затем опять помещают в муфельную печь на 15-20 мин, охлаждают в эксикаторе и снова взвешивают. Прокаливание повторяют до тех пор, пока не доведут тигель с осадком до постоянной массы. Если разность между двумя последними взвешиваниями не превышает 0,0002 г, то считают, что достигнуто постоянство массы. В противном случае прокаливание с последующим взвешиванием повторяют еще раз.
7. Вычисление результатов анализа. При определении массы осадка надо из полученной массы тигля с осадком вычесть массу тигля и массу золы фильтра. Масса золы фильтра указана на этикетке. В результате получают массу гравиметрической формы - соединения, пригодного для взвешивания. Если в результате анализа требуется определить массу серы S, а масса гравиметрической формы BaSO4 равна т, то результат можно рассчитать из простой пропорции. Обозначим молярную массу BaSO4 как M(BaSO4), молярную массу S как М(S). Составим пропорцию:
M(BaSO4) содержит M(S),
m(BaSO4) содержит x(S).
Решая эту пропорцию, получаем
x = m(BaSO4) [M(S) / M(BaSO4)]. (18.1)
Отношение молярной массы определяемого компонента к молярной массе гравиметрической формы называется фактором пересчета, или гравиметрическим фактором (множителем), или просто фактором и обозначается буквой F. Следовательно, массу (х) определяемого вещества в общем виде можно записать:
x=mF, (18.2)
где т - масса осадка (или масса гравиметрической формы), г. Значения факторов пересчета имеются в специальных таблицах или их рассчитывают. При вычислении факторов пересчета необходимо учитывать стехиометрические коэффициенты в химических формулах определяемого вещества и гравиметрической формы, поэтому число атомов определяемого компонента в числителе и знаменателе дроби должно быть одинаковым. Например, при вычислении массы алюминия из массы прокаленного оксида алюминия Аl2О3 фактор пересчета
F= 2M(Al)
М(Аl2О3)
Процентное содержание определяемого элемента или соединения рассчитывают по формуле
x = m • F • 100% / a , (18.3)
где m — масса осадка, г; F — фактор пересчета; а — навеска анализируемого вещества, г.
При проведении количественного анализа обычно выполняют 2-3 параллельных определения. Если расхождение между параллельными определениями не превышает 0,0002-0,0004 г, берут среднее значение. В противном случае анализ повторяют.