
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
12.3. Частные реакции катионов пятой аналитической группы
Реакции обнаружения катиона железа Fe2+
1. Гексацианоферрат (III) калия K3[Fe(CN)6] окисляет Fe2+ в Fe3+:
Fe2+ + [Fe(CN)6]3- → Fe3+ + [Fe(CN)6]4-.
Образовавшиеся ионы Fe3+ образуют с анионами гексацианоферрата (II) новый комплексный анион:
Fe3+ + К+ + [Fe(CN)6]4- → KFe3+ [Fe2+(CN)6]↓.
Соединение KFe3+[Fe2+(CN)6] носит название турнбулевой сини из-за темно-синего цвета.
Реакция проводится в кислой среде для подавления гидролиза солей железа. Осадок разлагается щелочами. Реакция является самой чувствительной на ионы Fe2+ и фармакопейной.
2. Сульфид аммония (NH4)2S или сульфид натрия образуют с солями железа (II) черный осадок сульфида железа (II):
Fe2+ + S2- = FeS↓.
Осадок растворим в разведенных минеральных кислотах. Реакция является фармакопейной.
3. Действие окислителей. Ионы железа Fe2+ - довольно сильные восстановители и способны окисляться под действием ряда окислителей, таких, как пероксид водорода, дихромат калия, перманганат калия в кислой среде. Например, взаимодействие сульфата железа (II) с перманганатом калия заканчивается обесцвечиванием раствора перманганата вследствие образования бесцветных ионов марганца Мn2+:
10FeSO4 + 2KMnO4 + 8H2SO4 = 2MnSO4 + K2 SO4 + 5Fe2(SO4)3 + 8Н2О
В щелочной среде окисление ионов железа (II) в растворе может быть осуществлено с помощью пероксида водорода:
2FeSO4 + Н2О2 + 4КОН = 2K2SO4 + 2Fe(OH)3↓;
2Fe2+ + 4ОН- + Н2О2 = 2Fe(OH)3↓.
Реакции обнаружения катиона железа Fe3+
1. Роданид калия KSCN образует с раствором соли железа (III) в слабокислой среде ряд комплексных ионов кроваво-красного цвета различного состава, в зависимости от концентрации реагента. В упрощенном виде уравнение реакции записывается следующим образом:
FeCl3 + 3KSCN ↔ Fe(SCN)3 + 3KCl;
Fe3+ + 3SCN- ↔ Fe(SCN)3.
Реакция обратима, но добавление избытка реагента усиливает окраску. Это одна из самых характерных и чувствительных реакций на ионы Fe3+.
2. Гексацианоферрат (II) калия K4[Fe(CN)6] образует с растворами солей Fe3+ темно-синий осадок гексацианоферрата (II) железа (III) (берлинскую лазурь), который, по данным рентгеноструктурного анализа, идентичен турнбулевой сини:
FeCl3 + K4[Fe(CN)6] → KFe[Fe(CN)6]↓ + 3KCl;
Fe3+ + K+ + [Fe(CN)6]4- → KFe[Fe(CN)6] ↓.
Реакция специфична для иона железа Fe3+.
3. Сульфид аммония (NH4)2S дает с солями Fe3+ черный осадок сульфида железа (III):
2FeCl3 + 3(NH4)2S = Fe2S3l + 6NH4C1.
При растворении сульфида железа (III) в разбавленных хлороводородной и серной кислотах ион железа Fe3+ восстанавливается до Fe2+ выделяющимся сероводородом и образуется сера:
Fe2S3 + 6HCl = 2FeCl3 + 3H2S;
2FeCl3 + H2S = 2HCl + S + 2FeCl2.
4. Йодид калия или натрия окисляется солями железа (III) в кислой среде до свободного йода:
2FeCl3 + 2KI = 2FeCl2 + 2КСl + I2.
Реакцию проводят на фильтровальной бумаге. Выделяющийся йод дает с крахмалом темно-синее пятно.
Реакции обнаружения катиона марганца Мn2+
1. Пероксид водорода Н2О2 в щелочной среде быстро окисляет соли марганца (II) до бурого осадка оксида-гидроксида марганца (IV) МnО(ОН)2:
MnSO4 + Н2О2 + 2NaOH = MnO(OH)2↓ + Na2SO4 + Н2О;
Мn2+ + 2ОН- + Н2О2 = МnO(OН)2↓ + Н2О.
Осадок МnО(ОН)2 не растворяется в разбавленной серной кислоте в отличие от гидроксида марганца (II).
2. Персульфат аммония (NH4)2S2O8 в присутствии AgNO3 (катализатор) и при нагревании окисляет Мn2+ до МnО4. Раствор становится фиолетовым, а при малой концентрации ионов марганца (II) - малиновым:
2MnSO4 + 5(NH4)2S2O8 + 8Н2О = 2НМnО4 + 5(NH4)2SO4 + 7H2SO4.
Для проведения реакции применяют свежеприготовленный раствор персульфата аммония с массовой долей его 50 %, подкисленный азотной кислотой и с добавлением нескольких капель раствора нитрата серебра. Раствор сильно нагревают, но не до кипения. Затем в него погружают стеклянную палочку, предварительно смоченную исследуемым раствором, нагревают еще 1-2 мин до 50 °С. Вместо раствора можно использовать 2—3 кристаллика персульфата аммония.
3. Сульфид аммония (NH4)2S или сульфид натрия Na2S образуют с растворами солей марганца (II) сульфид марганца MnS телесного цвета:
MnCl2 + (NH4)2S = MnS↓ + 2NH4Cl;
Mn2+ + S2- = MnS↓.
Сульфид марганца (II) растворим в разбавленных минеральных кислотах и в уксусной кислоте.
Реакции обнаружения катиона магния Mg2+
1. Гидроксид аммония NH4OH образует с растворами солей магния белый осадок гидроксида магния:
MgCl2 + 2NH4OH ↔ Mg(OH)2 + 2NH4Cl;
Mg2+ + 2NH4OH ↔ Mg(OH)2 + 2NH+4
В присутствии солей аммония гидроксид аммония NH4OH не дает осадка с ионами магния Mg2+. Это объясняется тем, что гидроксид магния растворяется в избытке аммонийных солей:
Mg(OH)2 + 2NH4Cl = MgCl2 + 2NH4OH.
2. Гидрофосфат натрия Na2HPO4 в присутствии NH4OH и NH4Cl осаждает из растворов солей магния белый кристаллический осадок магний-аммоний фосфата:
MgCl2 + Na2HPO4 + NH4OH = MgNH4PO4↓+ 2NaCl + H2O;
Mg2+ + NH4OH + HPO2-4 = MgNH4PO4 + H2O.
Присутствие в растворе NH4Cl необходимо для того, чтобы при действии NH4OH не образовался осадок Mg(OH)2. При большом избытке хлорида аммония происходит растворение магний-аммоний фосфата. Выпадение осадка можно ускорить трением стеклянной палочки о стенки пробирки. Из разбавленных растворов осадок выпадает медленно. В таких случаях рекомендуется выждать некоторое время.
В отсутствие гидроксида аммония ион магния Mg2+ дает с гидрофосфатом натрия белый аморфный осадок MgHPO4. Эта реакция является фармакопейной. Проведению реакции мешают катионы пятой группы, катионы Са2+, Sr2+, Ba2+ и другие катионы.
3. 8-оксихинолин в аммиачной среде (рН 9,5-12,7) образует с ионами магния Mg2+ зеленовато-желтый кристаллический осадок оксихинолята магния:
2HC9H6NO + MgCl2 = Mg(C9H6NO)2↓ + 2НСl.