
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
Часть II
КАЧЕСТВЕННЫЙ АНАЛИЗ
Глава 6. Основы качественного анализа
6.1. Методы качественного анализа
Для обнаружения и определения веществ проводят химические реакции в сухом виде или в растворе. Испытания сухим путем проводятся при высокой температуре (пирохимический метод) или при нормальных условиях (метод растирания порошков).
При пирохимическом методе исследуемое вещество на конце платиновой проволоки, один конец которой запаян в стеклянную палочку, вносят в бесцветное пламя горелки. По окрашиванию пламени судят о наличии в пробе (твердое вещество или раствор) определенных ионов. Если данное вещество окрашивает бесцветное пламя горелки в ярко-желтый цвет, то это указывает на присутствие натрия в исследуемом веществе. На практике применяются реакции окрашивания перлов буры. Перлы, или окрашенные стекла, готовят следующим образом. Ушко платиновой проволоки нагревают и погружают в тетраборат натрия Na2B4O7 • 10Н2О или в гидрофосфат аммония - натрия NaNH4HPO4. Эту операцию повторяют до тех пор, пока на ушке проволоки не образуется перл. Затем на образовавшийся перл наносят исследуемое вещество (в сухом виде или в виде раствора). Ушко платиновой проволоки осторожно нагревают и прокаливают. Цвет перла после прокаливания укажет на наличие тех или других элементов. Например, марганец окрашивает перл в фиолетовый цвет, хром - в зеленый.
Метод растирания порошков основан на образовании окрашенных соединений в результате реакции между двумя твердыми веществами. Так, если растирать сульфат кобальта с роданидом аммония, то образуется тетрароданидный комплекс кобальта, окрашенный в синий цвет:
CoSO4 + 4NH4SCN ↔ (NH4)2[Co(SCN)4] + (NH4)2SO4.
При растирании солей аммония с известью образуется аммиак, который легко определить по специфическому запаху или с помощью смоченной красной лакмусовой бумажки:
2NH4Cl + Са(ОН)2 → СаСl2 + 2NH3↑ + 2Н2О.
Красная лакмусовая бумажка синеет.
Следует отметить, что реакции, проводимые сухим путем в качественном анализе являются вспомогательными и применяются главным образом для предварительного испытания веществ. Главную роль играют реакции, проводимые мокрым путем, происходящие между веществами в водных растворах. Исследуемое вещество должно быть предварительно растворено в дистиллированной воде или кислотах. В качестве растворителей чаще всего используют соляную и азотную кислоты, реже – царскую водку (смесь из 3 объемов концентрированной соляной кислоты и 1 объема концентрированной азотной кислоты) и растворы щелочей. Одни вещества легко растворяются при обыкновенной температуре, другие - при нагревании.
Некоторые химические вещества определенного состава кристаллизуются в характерной для данного вещества форме. Для обнаружения таких веществ применяют микрокристаллоскопический анализ, в котором используют зависимость формы и физических свойств кристаллов от их состава. При проведении микрокристаллоскопического анализа на предметное стекло помещают каплю анализируемого раствора и каплю реактива. В зоне соприкосновения капель (или при их смешении) образуются кристаллы осадка. Иногда в каплю вводят кристаллик реактива для ускорения кристаллизации.
Иногда прибегают к выполнению реакций капельным методом. Реакцию проводят на фильтровальной бумаге, часовом стекле, специальных пластинках с углублениями или в маленьких фарфоровых тиглях. На полоску фильтровальной бумаги наносят в определенной последовательности анализируемый раствор и реактивы и наблюдают появление пятен определенного цвета. На бумаге часто одновременно с обнаружением ионов происходит и их разделение. При выполнении анализа на часовых стеклах и пластинках наблюдают появление или растворение осадков или образование комплексов определенного цвета.
Методы анализа в зависимости от количества исследуемого вещества, объема раствора и техники выполнения классифицируют на макро-, полумикро-, микро-, ультра, микро-, субмикро- и субультрамикрометоды. В табл. 6.1 представлены массы анализируемых веществ и объемы растворов, необходимые для проведения анализа каждым из этих методов. В этой же таблице представлены новая классификация и номенклатура методов анализа, принятая секцией аналитической химии ИЮПАК (Международный союз теоретической и прикладной химии).
Таблица 6.1. Классификация методов анализа по массе и объему взятого для анализа вещества
Название |
Новое название |
Масса и объем исследуемого вещества |
|
г |
мл |
||
Макроанализ Полумикроанализ Микроанализ Ультрамикроанализ Субмикроанализ Субультрамикроанализ |
Грамм-метод Сантиграмм-метод Миллиграмм-метод Микрограмм-метод Нанограмм-метод Пикограмм-метод |
1 – 10 0,05 – 0,5 10-6 – 10-3 10-9 – 10-6 10-12 – 10-9 10-12 |
1 – 100 1 – 10 10-4 – 10-1 10-6 – 10-4 10-10 – 10-7 10-10 |
Метод анализа выбирают в зависимости от предполагаемого содержания вещества и от предела обнаружения применяемой реакции.
В настоящее время при изучении качественного химического анализа в учебных лабораториях применяется полумикрометод (полумикроанализ).