
- •Isbn 985-06-0828-5.
- •Введение
- •Глава 1. Растворы. Основы теории электролитической диссоциации.
- •1.1. Понятие о растворах. Процесс растворения. Растворимость веществ
- •1.2. Массовая доля растворенного вещества
- •1.3. Электролитическая диссоциация
- •1.5. Диссоциация оснований, кислот, амфотерных гидроксидов, солей в водных растворах
- •1.6. Факторы, влияющие на степень электролитической диссоциации
- •1.7. Константа электролитической диссоциации
- •1.8. Сильные электролиты и их активность
- •Глава 2. Кислотно-основное равновесие в водных растворах
- •2.1. Диссоциация воды.
- •2.2. Буферные растворы
- •2.3. Сущность гидролиза и типы гидролиза солей
- •2.4. Соли, образованные сильным основанием и слабой кислотой
- •2.5. Соли, образованные слабым основанием и сильной кислотой
- •2.6. Соли, образованные слабым основанием и слабой кислотой
- •2.7. Соли, образованные сильным основанием и сильной кислотой
- •2.8. Ступенчатый гидролиз
- •2.9. Степень гидролиза. Смещение равновесия гидролиза
- •2.10. Необратимый, или полный, гидролиз
- •Глава 3. Реакции окисления-восстановления
- •3.1. Основные положения электронной теории окислительно-восстановительных реакций
- •3.2. Окислительно-восстановительные потенциалы и направление окислительно-восстановительных реакций
- •3.3. Составление уравнений окислительно-восстановительных реакций электронно-ионным методом, или методом полуреакций
- •3.4. Применение реакций окисления-восстановления в химическом анализе
- •Глава 4. Комплексные соединения
- •4.2. Природа химической связи в комплексных ионах
- •4.3. Классификация и номенклатура комплексных соединений
- •4.4. Диссоциация комплексных соединений. Константы нестойкости и устойчивости
- •4.5. Внутрикомплексные соединения
- •4.6 Применение комплексных соединений в медицине и химическом анализе
- •Глава 5. Гетерогенные равновесия и процессы
- •5.1. Константа растворимости
- •5.2. Взаимосвязь между растворимостью и константой растворимости
- •5.3. Условия образования осадков
- •5.4. Условия растворения осадков
- •5.5. Понятие о коллоидных растворах
- •Часть II
- •Глава 6. Основы качественного анализа
- •6.1. Методы качественного анализа
- •6.2. Чувствительность и специфичность реакций. Дробный и систематический анализ
- •6.3. Понятие о химических реактивах
- •6.4. Аналитическая классификация катионов
- •Глава 7. Устройство и оборудование лаборатории
- •7.1. Требования к помещению лаборатории
- •7.2. Оборудование и посуда для полумикроанализа
- •7.3. Мытье химической посуды
- •Глава 8. Первая аналитическая группа катионов
- •8.1. Общая характеристика группы
- •8.2. Биологическая роль катионов первой аналитической группы. Применение соединений катионов первой аналитической группы в медицине
- •8.3. Частные реакции катионов первой аналитической группы
- •8.4. Анализ смеси катионов первой аналитической группы
- •Глава 9. Вторая аналитическая группа катионов
- •9.1.Общая характеристика группы. Действие группового реагента
- •9.2. Биологическая роль катионов второй аналитической группы. Применение соединений катионов второй аналитической группы в медицине
- •9.3. Частные реакции катионов второй аналитической группы
- •9.4. Анализ смеси катионов второй аналитической группы
- •2. Исследование осадка:
- •Глава 10. Третья аналитическая группа катионов
- •10.1.Общая характеристика группы. Действие группового реагента
- •10.2. Биологическая роль катионов третьей аналитической группы. Применение соединений катионов третьей аналитической группы в медицине
- •10.3. Частные реакции катионов третьей аналитической группы
- •10.4. Анализ смеси катионов третьей аналитической группы
- •10.5. Систематический анализ смеси катионов первой, второй и третьей аналитических групп
- •Вопросы
- •Глава 11. Четвертая аналитическая
- •11.1. Общая характеристика группы. Действие группового реагента
- •11.2. Биологическая роль катионов четвертой аналитической группы. Применение соединений катионов четвертой аналитической группы в медицине
- •11.3. Частные реакции катионов четвертой аналитической группы
- •11.4. Анализ смеси катионов четвертой аналитической группы
- •Глава 12. Пятая аналитическая группа катионов
- •12.1. Общая характеристика группы. Действие группового реагента
- •12.2. Биологическая роль катионов пятой аналитической группы. Применение соединений катионов пятой группы в медицине
- •12.3. Частные реакции катионов пятой аналитической группы
- •12.4. Ход анализа смеси катионов пятой аналитической группы
- •Глава 13. Шестая аналитическая группа катионов
- •13.1. Общая характеристика группы. Действие группового реагента
- •13.2. Биологическая роль катионов шестой аналитической группы. Применение соединений катионов шестой аналитической группы в медицине
- •13.3. Частные реакции катионов шестой аналитической группы
- •13.4. Анализ смеси катионов шестой аналитической группы
- •13.5. Систематический анализ смеси катионов всех аналитических групп
- •13.6. Ситуационные задачи по обнаружению катионов в исследуемом растворе
- •Глава 14. Общая характеристика
- •14.1. Биологическая роль элементов, входящих в состав анионов
- •14.2. Частные реакции анионов первой аналитической группы. Действие группового реагента
- •14.3. Частные реакции анионов второй аналитической группы. Действие группового реагента
- •14.4. Частные реакции анионов третьей аналитической группы
- •Глава 15. Систематический ход
- •15.1. Предварительные испытания
- •15.2. Обнаружение анионов первой аналитической группы
- •15.3. Обнаружение анионов второй аналитической группы
- •15.4. Обнаружение анионов третьей аналитической группы
- •15.5. Ситуационные задачи по обнаружению анионов в исследуемом растворе
- •Глава 16. Анализ неорганического
- •16.1. Установление аналитической группы катиона. Обнаружение катиона
- •16.2. Установление аналитической группы аниона. Обнаружение аниона
- •16.3. Анализ смеси нескольких солей
- •Часть III
- •Глава 17. Основные принципы количественного анализа
- •17.1. Задачи и методы количественного анализа
- •17.2. Подготовка вещества к анализу. Отбор проб для анализа
- •17.3. Лабораторные технические и аналитические весы
- •Глава 18. Гравиметрический (весовой) анализ
- •18.1. Сущность гравиметрического анализа
- •18.2. Посуда и оборудование в гравиметрическом анализе
- •18.3. Осаждение. Влияние различных факторов на образование осадков
- •18.4. Техника выполнения операций при проведении гравиметрического анализа
- •18.5. Примеры гравиметрических определений
- •Глава 19. Титриметрическии (объемный) анализ
- •19.1. Моль. Молярная масса. Химический эквивалент. Молярная масса эквивалента. Фактор эквивалентности
- •19.2. Способы выражения состава раствора
- •19.3. Основные понятия в титриметрическом анализе и условия его проведения
- •19.4. Измерение объемов растворов и посуда в титриметрическом анализе
- •19.5. Рабочие растворы, их приготовление. Установочные (исходные) вещества. Поправочный коэффициент
- •19.6. Способы титрования
- •19.7. Классификация методов титриметрического анализа
- •Глава 20. Кислотно-основное
- •20.1. Сущность и методы кислотно-основного титрования
- •20.2. Точка эквивалентности при кислотно-основном титровании
- •20.3. Кислотно-основные индикаторы
- •20.4. Кривые кислотно-основного титрования. Выбор индикатора
- •20.5. Стандартизация титрантов в методе кислотно-основного титрования
- •Тестовый самоконтроль по теме: «Кислотно-основное титрование»
- •20.6. Примеры определений в методе кислотно-основного титрования
- •V(hClконц) V(hClразб) • с(hClразб)
- •Глава 21. Методы окислительно-восстановительного
- •21.1. Общая характеристика и классификация методов окислительно-восстановительного титрования
- •21.2. Перманганатометрия. Характеристика метода
- •21.3. Приготовление рабочего раствора кМnО4 и его стандартизация
- •21.4. Примеры перманганатометрических определений
- •21.5. Йодометрия. Характеристика метода
- •21.6. Стандартизация рабочих растворов в йодометрии
- •21.7. Примеры йодометрических определений
- •21.8. Броматометрия и бромометрия
- •21.9. Нитритометрия
- •Глава 22. Методы осаждения
- •22.1. Общая характеристика методов и их классификация
- •22.2. Метод Мора
- •22.3. Метод Фаянса
- •22.4. Метод Фольгарда (роданометрия или тиоцианатометрия)
- •Глава 23. Комплексонометрия
- •23.1. Сущность и возможности метода
- •23.2. Основные титранты и первичные стандарты метода
- •23.3. Индикаторы комплексонометрических определений
- •23.4. Примеры комплексонометрических определений
- •Глава 24. Физико-химические
- •24.1. Сущность физико-химических методов анализа. Их классификация
- •24.2. Фотометрические методы анализа
- •24.3. Нефелометрия и турбидиметрия
- •24.4. Рефрактометрический метод анализа (рефрактометрия)
- •24.5. Потенциометрия. Потенциометрическое определение рН растворов
- •24.6. Хроматография. Сущность
2.2. Буферные растворы
В аналитической химии очень часто используют буферные растворы. Буферными называют растворы, рН которых практически не изменяется при добавлении к ним небольших количеств кислот и оснований или при их разбавлении. Буферные растворы могут быть четырех типов.
1. Слабая кислота и ее соль. Например, ацетатный буферный раствор СН3СООН + CH3COONa.
2. Слабое основание и его соль. Например, аммиачный буферный раствор NH4OH + NH4C1.
3. Раствор двух кислых солей. Например, фосфатный буферный раствор NaH2PO4 + Na2HPO4. В этом случае соль NaH2PO4 играет роль слабой кислоты.
4. Аминокислотные и белковые буферные растворы. рН и рОН буферных растворов зависят от величины константы диссоциации кислоты или основания и от соотношения концентраций компонентов. Эта зависимость Выражается уравнениями
pH = pKk – lg C (кислота) (2.6)
С (соль)
или
рОН = рК0 - lg С(основание) , (2.7)
С(соль)
где рКк и рК0 - показатели константы диссоциации соответствующей кислоты и основания; С(кислота) - концентрация кислоты; С(основание) - концентрация основания; С(соль) — концентрация соли.
При приготовлении буферного раствора с одинаковой концентрацией кислоты (основания) и соли рН или рОН такого раствора численно равняется рКк или рК0, так как С(кислота)/С(соль) = 1 или С(основание) / С(соль) = 1. Изменяя соотношение между концентрациями кислоты (основания) и соли, можно получить серию растворов с различной концентрацией ионов водорода, т.е. с различными значениями рН.
На примере ацетатного буферного раствора рассмотрим, на чем основано свойство буферных растворов сохранять постоянным значение рН. Для ацетатного буферного раствора рН можно рассчитать по уравнению (2.6):
рН = рКсн3соон – lg С (СН3СООН) . (2.8)
C(CH3COONa)
При разбавлении водой ацетатного буферного раствора, как видно из уравнения (2.8),соотношение С(СН3СООН) / C(CH3CОONa) не изменяется, так как концентрации кислоты и соли уменьшаются в одинаковое число раз, а рКсн3соон остается постоянной величиной. В результате при разбавлении рН буферного раствора практически не меняется.
Теперь предположим, что приготовлен 1 л ацетатного буферного раствора с одинаковой концентрацией обоих компонентов, равной 0,1 М. Для уксусной кислоты рК = 4,76. Следовательно, согласно уравнению (2.8), рН такого буферного раствора равно следующей величине:
pH = 4,76 – lg0,1/0,1 = 4,76.
Добавим к такому раствору 10 миллимоль соляной кислоты. В результате реакции
CH3COONa + HC1 → СН3СООН + NaCl
концентрация слабой кислоты увеличивается, а концентрация соли уменьшается. Концентрация уксусной кислоты будет равна 0,1 М + 0,01М = 0,11М, а концентрация соли CH3COONa: 0,1M – 0,01М = 0,09М. Тогда рН ацетатного буферного раствора уменьшается на 0,08:
рН = 4,76 – lg(0,11/0,09) =4,76 - 0,079 = 4,68.
При добавлении вместо сильной кислоты такого же количества основания последнее реагирует с уксусной кислотой:
СН3СООН + NaOH ↔ CH3COONa + Н2О.
Концентрация кислоты уменьшается (0,1М - 0,01М = 0,09М), но увеличивается концентрация соли (0,1М + 0,01M = 0,11М). Тогда
рН = 4,76 – lg (0,09/0,11) = 4,76 - 0,09 = 4,67.
При добавлении кислоты или основания концентрации компонентов буферного раствора изменяются незначительно, и после установления равновесия рН изменяется тоже незначительно.
Добавление к 1 л воды 10 миллимоль НСl или NaOH создает концентрацию [Н+] и [ОН-], равную 0,01М. В первом случае рН станет равным 2, во втором — 12, т.е. рН изменится на 5 единиц по сравнению с рН чистой воды.
Способность буферных растворов поддерживать рН практически постоянным является ограниченной. Любой буферный раствор практически сохраняет постоянство рН только до прибавления некоторого определенного количества кислоты или щелочи. Способность буферного раствора противодействовать смещению рН измеряется буферной емкостью. Эта величина характеризуется количеством моль Н+ или ОН- соответственно сильной кислоты или щелочи, которое необходимо добавить к 1 л буферного раствора, чтобы сместить величину его рН на одну единицу.
Буферные растворы широко применяются в качественном и количественном анализе для создания и поддержания определенного значения рН среды при проведении реакций. Так, ионы Ва2+ отделяют от ионов Са2+ и Sr2+ осаждением дихромат-ионами Cr2О72- в присутствии ацетатного буферного раствора. При определении многих катионов металлов С помощью трилона Б методом комплексонометрии используют аммиачный буферный раствор (NH4OH + NH4Cl).
Буферные растворы или буферные системы обеспечивают постоянство рН биологических жидкостей и тканей. Главными буферными системами в организме являются гидрокарбонатная, гемоглобиновая, фосфатная и белковая. Действие всех буферных систем в организме взаимосвязано. Поступившие извне или образовавшиеся в процессе обмена веществ ионы водорода связываются в слабо диссоциируемые соединения одним из компонентов буферных систем. Однако при некоторых заболеваниях может происходить изменение значения рН крови. Смещение значения рН крови в кислую область от нормальной величины рН 7,4 называется ацидозом, в щелочную область - алкалозом. Ацидоз возникает при тяжелых формах сахарного диабета, длительной физической работе и при воспалительных процессах. При тяжелой почечной или печеночной недостаточности или при нарушении дыхания может возникнуть алкалоз.
ВОПРОСЫ И УПРАЖНЕНИЯ
1. Что такое буферные растворы?
2. Назовите основные типы буферных растворов. Приведите примеры.
3. От чего зависит рН буферных растворов?
4. Почему рН ацетатного буферного раствора не изменяется значительно при добавлении к нему небольших количеств азотной кислоты или гидроксида калия?
5. Будет ли изменяться рН фосфатного буферного раствора при разведении его водой в 10 раз? Дайте объяснение.
6. Вычислите: а) рН фосфатного буферного раствора, состоящего из 16 мл раствора Na2HPO4 с концентрацией 0,1 моль/л и 40 мл раствора NaH2PO4 с концентрацией 0,04 моль/л, если pKH2PO-4 = 6,8; б) как изменится рН этого раствора при добавлении к нему 6 мл раствора НС1 с концентрацией 0,1 моль/л.
Ответ: а) рН = 6,8; б) рН = 6,46; ∆рН = 0,34.
7. Приведите примеры применения буферных растворов в аналитической химии.
8. Что такое: а) ацидоз; б) алкалоз?