
- •Оглавление
- •Часть I. Механика 4
- •Часть II. Молекулярная физика и термодинамика 81
- •Часть I. Механика
- •Кинематика
- •Основные понятия кинематики
- •З.2. Скорость
- •Среднее ускорение
- •Мгновенное ускорение
- •Ускорение точки при прямолинейном движении
- •Кинематика вращательного движения
- •4. Динамика
- •Закон всемирного тяготения
- •2). Сила тяжести
- •3). Сила реакции опоры
- •4). Сила трения
- •Виды трения
- •5). Сила упругости
- •4.4. Импульс. Закон сохранения импульса
- •История появления термина
- •4.5. Законы Ньютона
- •Замечания:
- •4.6. Энергия
- •Потенциальная энергия тела, поднятого над поверхностью Земли
- •Закон сохранения энергии в механике
- •4.7. Динамика вращательного движения
- •2). Пара сил
- •Момент импульса
- •Механический (классический) принцип относительности (принцип относительности Галилея)
- •Основы механики жидкостей и газов
- •Архимед из СиракузArchimedes of Siracuse, ок. 287–212 г. До н. Э.
- •Условие плавания тел
- •Вязкость газов
- •Часть II. Молекулярная физика и термодинамика
- •I. Молекулярная физика
- •1.1. Предмет молекулярной физики
- •1.2. Внесистемные единицы измерения величин в микрофизике физике
- •1.3. Основные положения молекулярно-кинетической теории строения вещества
- •1.4. Число степеней свободы молекул
- •1.5. Термодинамическая система. Термодинамические состояние и процесс
- •1.6. Статистический метод в молекулярной физике
- •1.7. Количество вещества. Масса молекул
- •1.8. Идеальный газ
- •1.9. Закон равномерного распределения энергии по степеням свободы молекул
- •1.10. Закон Максвелла25 о распределении молекул идеального газа по скоростям
- •Вывод распределения по Максвеллу
- •Границы применимости
- •Зависимость функции распределения Максвелла от температуры.
- •Характерные скорости Наиболее вероятная скорость
- •Средняя скорость
- •1.11. Основное уравнение молекулярно – кинетической теории (уравнение Клаузиуса26)
- •1.12. Уравнение Менделеева27 - Клапейрона28
- •1.13. Барометрическая формула. Распределение Больцмана
- •1.14. Средняя длина свободного пробега молекул
- •II. Термодинамика
- •2 .1. Термодинамический метод
- •2.2. Внутренняя энергия
- •Два способа изменения внутренней энергии. Теплота и работа
- •Первое начало термодинамики
- •Нулевое начало термодинамики
- •Теплоёмкость
- •1). Молярная теплоёмкость идеального газа при постоянном объёме
- •2). Молярная теплоёмкость идеального газа при постоянном давлении Уравнение Майера
- •Термический кпд для кругового процесса
- •Из истории тепловых двигателей
- •Цикл Карно38
- •Второе начало термодинамики
- •Энтропия
- •2.16. Статистическая интерпретация второго начала термодинамики
- •Реальные газы
- •Жидкости
- •Твёрдые тела
- •Изоморфизм и полиморфизм кристаллов
- •Кристаллические вещества Типы кристаллических решеток
- •Общая характеристика
- •Классификация решёток по симметрии
- •Объём ячейки
Из истории тепловых двигателей
Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι?) веке н. э. в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени. На прогресс это изобретение никакого влияния не оказало и было забыто. Следующей тепловой машиной, изобретённой человеком, была пороховая ракета и пороховое орудие. Дата его изобретения неизвестна, первое известное упоминание относится к 13 веку. Это произошло в Китае. Это было простое устройство, которое с точки зрения инженера и механика не является тепловым двигателем, так как не имеет вала отбора мощности, но с точки зрения физики является тепловой машиной. Поэтому этот прибор имеет ограниченное применение: для связи, в военном деле, как транспорт (в последнем случае есть проблемы, но в принципе это возможно). В 17 веке изобретательская мысль попыталась на базе порохового орудия создать тепловой двигатель.
В поршневых тепловых двигателях горячий газ расширяется в цилиндре, перемещая поршень, и тем самым совершает механическую работу. Для превращения прямолинейного возвратно-поступательного движения поршня во вращательное движение вала обычно используется кривошипно-шатунный механизм. В двигателях внешнего сгорания (например, в паровых машинах) рабочее тело нагревают за счет сжигания топлива вне двигателя и подают в цилиндр газ (пар) под высокими температурой и давлением. Газ, расширяясь и перемещая поршень, охлаждается, а давление его падает до близкого к атмосферному. Этот отработанный газ удаляется из цилиндра, а затем в него подается новая порция газа - либо после возврата поршня в исходное положение (в двигателях одинарного действия - с односторонним впуском), либо с обратной стороны поршня (в двигателях двойного действия). В последнем случае поршень возвращается в исходное положение под действием расширяющейся новой порции газа, а в двигателях одинарного действия поршень возвращается в исходное положение маховиком, установленным на валу кривошипа. В двигателях двойного действия на каждый оборот вала приходится два рабочих хода, а в двигателях одинарного действия - только один; поэтому первые двигатели в два раза мощнее при одинаковых габаритах и скоростях. В двигателях внутреннего сгорания горячий газ, который перемещает поршень, получают за счет сжигания смеси топлива и воздуха непосредственно в цилиндре. Для подвода свежих порций рабочего тела и выпуска отработанного газа в двигателях применяется система клапанов. Подвод и выпуск газа производятся при строго определенных положениях поршня, что обеспечивается специальным механизмом, который управляет работой впускных и выпускных клапанов.
Холодильная машина
Холодильная
машина – периодически действующая
установка,
в
которой за счёт работы внешних сил
теплота переносится к телу с более
высокой температурой (
рис.
130).
Рис. 130.
В основе действия холодильной машины лежит обратный цикл Карно: системой за цикл от термостата с более низкой температурой Т2 отнимается количество теплоты и отдаётся термостату с более высокой температурой Т1 количество теплоты .
Для кругового процесса = А, но согласно условию = - < 0, поэтому А < 0 и - = - А или = + А, т.е. количество теплоты , отданное системой источнику теплоты при более высокой температуре Т1, больше количества теплоты , полученного от источника теплоты при более низкой температуре Т2, на величину работы, совершённой над системой. Следовательно, без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать её более нагретому.
Эффективность холодильной машины характеризуется холодильным коэффициентом:
=
=
.
Здесь полезным эффектом выступает теплота , затраченным – абсолютное значение совершенной работы.
Для обратимых циклов существует взаимосвязь: = - 1.