Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekts_M_MiT_vosstanovlen.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.66 Mб
Скачать

1.8. Идеальный газ

Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём молекул газа пренебрежимо мал; 3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги; 4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Идеальный газ реально не существует.

1.9. Закон равномерного распределения энергии по степеням свободы молекул

Закон доказан Л.Больцманом24 методом классической статистической физики, исходя из предположения, что движение молекул подчиняется законам классической механики:

Для статистической системы, которая находится в состоянии термодинамического равновесия на каждую поступательную и вращательную степени свободы молекулы в среднем приходится одинаковая кинетическая энергия, равная kT,

где k = 1,38 10-23 - постоянная Больцмана.

Если молекула имеет i степеней свободы, то её средняя кинетическая энергия равна: < > = kT.

Закон Больцмана лежит в основе всей теоpии идеальных газов. Однако, закон оказался неточным, т.к. молекулы – квантовые частицы.

1.10. Закон Максвелла25 о распределении молекул идеального газа по скоростям

Понятие о функции распределения

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее, чем х, где х — произвольное действительное число.

Функция распределения, основное понятие статистической физики; характеризует плотность вероятности распределения частиц статистической системы по фазовому пространству (т.е. по координатам (qi и импульсам pi) в классической статистической физике или вероятность распределения по квантовомеханическим состояниям в квантовой статистике.

Распределение Ма́ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию.

Функция распределения молекул идеального газа по скоростям

Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного  (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т  скорости, заключенные в интервале от     до + d .  

Идеальный газ – система из большого числа свободных невзаимодействующих частиц, находящихся в непрерывном хаотическом движении, часто сталкивающихся друг с другом. Поэтому в газе при постоянных внешних параметрах устанавливается равновесное состояние, которому соответствует определённое распределение частиц в пространстве по направлениям движения и скоростям. При равновесии средние скорости и число частиц, движущихся в разных направлениях, оказывается одинаковым, о чём свидетельствует отсутствие направленного потока газа при равновесии.

Абсолютная величина скорости молекул, а также проекции скорости на любую ось могут принимать непрерывные значения от нуля до бесконечности. Значит, должна существовать непрерывная функция распределения скоростей f( ), показывающая относительное количество молекул, движущихся в единичном интервале скоростей со скоростью, близкой к скорости .

На языке теории вероятности d есть плотность вероятности того, что молекула имеет скорость, лежащую в интервале от до + d . Тогда сама вероятность описывается выражением: dW = f( ) •d .

Нахождение функции распределения f( ) молекул по скоростям является главной задачей молекулярно-кинетической теории. Это объясняется тем, что согласно теории вероятности любой функции F( ) (это может быть внутренняя энергия, длина свободного пробега или любая другая функция состояния газа) определяется следующим интегралом:

< F( )> = f( ) •d .

Впервые найти функцию распределения по скоростям удалось Д.Максвеллу, который исходил из следующих предположений:

  1. Идеальный газ состоит из большого числа N одинаковых молекул;

  2. Температура газа постоянна (T= const);

  3. Молекулы газа совершают тепловое хаотическое движение;

  4. На газ не действуют силовые поля.

Функция распределения молекул по скоростям f )= определяет относительное число молекул , скорости которых лежат в интервале от до + d .

Используя методы теории вероятностей, Максвелл нашел функцию f ( ) -–закон распределения молекул идеального газа по скоростям:

f( ) = 4 ( )3/2 2 еxp { },

где f( ) зависит от рода газа (mi масса молекулы) и от параметров состояния (температуры Т).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]