
- •Оглавление
- •Часть I. Механика 4
- •Часть II. Молекулярная физика и термодинамика 81
- •Часть I. Механика
- •Кинематика
- •Основные понятия кинематики
- •З.2. Скорость
- •Среднее ускорение
- •Мгновенное ускорение
- •Ускорение точки при прямолинейном движении
- •Кинематика вращательного движения
- •4. Динамика
- •Закон всемирного тяготения
- •2). Сила тяжести
- •3). Сила реакции опоры
- •4). Сила трения
- •Виды трения
- •5). Сила упругости
- •4.4. Импульс. Закон сохранения импульса
- •История появления термина
- •4.5. Законы Ньютона
- •Замечания:
- •4.6. Энергия
- •Потенциальная энергия тела, поднятого над поверхностью Земли
- •Закон сохранения энергии в механике
- •4.7. Динамика вращательного движения
- •2). Пара сил
- •Момент импульса
- •Механический (классический) принцип относительности (принцип относительности Галилея)
- •Основы механики жидкостей и газов
- •Архимед из СиракузArchimedes of Siracuse, ок. 287–212 г. До н. Э.
- •Условие плавания тел
- •Вязкость газов
- •Часть II. Молекулярная физика и термодинамика
- •I. Молекулярная физика
- •1.1. Предмет молекулярной физики
- •1.2. Внесистемные единицы измерения величин в микрофизике физике
- •1.3. Основные положения молекулярно-кинетической теории строения вещества
- •1.4. Число степеней свободы молекул
- •1.5. Термодинамическая система. Термодинамические состояние и процесс
- •1.6. Статистический метод в молекулярной физике
- •1.7. Количество вещества. Масса молекул
- •1.8. Идеальный газ
- •1.9. Закон равномерного распределения энергии по степеням свободы молекул
- •1.10. Закон Максвелла25 о распределении молекул идеального газа по скоростям
- •Вывод распределения по Максвеллу
- •Границы применимости
- •Зависимость функции распределения Максвелла от температуры.
- •Характерные скорости Наиболее вероятная скорость
- •Средняя скорость
- •1.11. Основное уравнение молекулярно – кинетической теории (уравнение Клаузиуса26)
- •1.12. Уравнение Менделеева27 - Клапейрона28
- •1.13. Барометрическая формула. Распределение Больцмана
- •1.14. Средняя длина свободного пробега молекул
- •II. Термодинамика
- •2 .1. Термодинамический метод
- •2.2. Внутренняя энергия
- •Два способа изменения внутренней энергии. Теплота и работа
- •Первое начало термодинамики
- •Нулевое начало термодинамики
- •Теплоёмкость
- •1). Молярная теплоёмкость идеального газа при постоянном объёме
- •2). Молярная теплоёмкость идеального газа при постоянном давлении Уравнение Майера
- •Термический кпд для кругового процесса
- •Из истории тепловых двигателей
- •Цикл Карно38
- •Второе начало термодинамики
- •Энтропия
- •2.16. Статистическая интерпретация второго начала термодинамики
- •Реальные газы
- •Жидкости
- •Твёрдые тела
- •Изоморфизм и полиморфизм кристаллов
- •Кристаллические вещества Типы кристаллических решеток
- •Общая характеристика
- •Классификация решёток по симметрии
- •Объём ячейки
Основы механики жидкостей и газов
Предмет гидроаэромеханики
Гидроаэромеханика – раздел механики, посвящённый изучению равновесия и движения жидких и газообразных сред и их взаимодействия между собой и обтекаемыми ими твёрдыми телами.
Движение несжимаемой жидкости изучается в гидродинамике, а газов – в аэродинамике.
Газ и жидкость в гидроаэромеханике
Газ (от греч. chaos – хаос) – агрегатное состояние вещества, в котором его частицы не связаны или слабо связаны силами взаимодействия и движутся свободно, занимая весь предоставленный им объём.
В отличие от твёрдых тел и жидкостей объём газа существенно зависит от давления и температуры.
Жидкость – это агрегатное состояние вещества, промежуточное между твёрдым и газообразным.
Жидкости присущи некоторые черты твёрдого тела (сохраняет свой объём, образует поверхность, обладает определённой прочностью на разрыв) и газа (принимает форму сосуда, в котором находится, может непрерывно переходить в газ); в то же время она обладает рядом только ей присущих особенностей, из которых наиболее характерной является текучесть.
Нормальные жидкости макроскопически однородны и изотропны при отсутствии внешних воздействий. Последнее так же сближает их с газами.
В гидроаэромеханике жидкости и газы рассматривают как сплошную, непрерывную среду, отвлекаясь от их молекулярного строения.
Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение описывается одинаковыми параметрами и идентичными уравнениями.
Предмет гидроаэромеханики
Гидростатика – раздел гидроаэромеханики, в котором изучаются равновесие жидкости и воздействие покоящейся жидкости на погруженные в неё тела, жидкость при этом считается практически несжимаемой.
Аэростатика – раздел гидроаэромеханики, в котором изучается равновесие газообразных сред, в основном атмосферы.
При этом необходимо учитывать, что сжимаемость газов во много раз превосходит сжимаемость жидкостей.
Основными законами гидроаэростатики являются закон Паскаля16 и закон Архимеда17.
Давление покоящейся жидкости (газа). Закон Паскаля
Закон
был установлен экспериментально
французским учёным Б.Паскалем в 1648 г.:
давление, производимое на покоящуюся
жидкость (газ) внешними силами передаётся
жидкостью (газом) одинаково во всех
направлениях (рис. 86): P
=
,
Па, где
P
– это давление, F
– приложенная сила, S
– площадь поверхности, на которую
действует сила давления
.
Рис. 86.
Это утверждение объясняется подвижностью частиц жидкостей и газов во всех направлениях. Из формулы мы видим, что при увеличении силы воздействия при той же площади сосуда давление на его стенки будет увеличиваться.
Действительно, если в покоящуюся жидкость (газ) поместить небольшую тонкую пластинку, то части жидкости (газа), находящиеся по разные стороны от неё, будут действовать на каждый её элемент ∆S с силами ∆ , которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ∆S, т.к. наличие касательных сил привело бы частицы жидкости в движение (рис. 87).
Рис. 87.
Для сжимаемых жидкостей (газов) закон Паскаля, вообще говоря, несправедлив.
Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.
На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, гидравлические прессы и др., например, гидравлический мультипликатор (рис. 88), гидравлический пресс (рис. 89).
Гидравлический
мультипликатор предназначен для
увеличения давления (Р2
> Р1,
так как при одинаковой силе давления
S1>
S2
).
Рис. 88.
Рис. 89. Гидростатическое давление
Рассмотрим равновесие однородной жидкости, находящейся в поле тяготения Земли. На каждую частицу жидкости, находящейся в поле тяготения Земли, действует сила тяжести. Жидкости и газы передают по всем направлениям не только оказываемое на них внешнее давление, но и то давление, которое существует внутри их благодаря весу собственных частей. Верхние слои жидкости давят на средние слои, те - на нижние, а последние - на дно.
Давление, оказываемое покоящейся жидкостью, называется гидростатическим.
Получим формулу для расчета гидростатического давления жидкости на произвольной глубине h в окрестности точки А ( рис. 90).
Рис. 90.
Сила давления, действующая в этом месте со стороны вышележащего узкого вертикального столба жидкости, может быть выражена двумя способами: во-первых, как произведение давления в основании этого столба на площадь его сечения: F = Р S;
во-вторых, как вес того же столба жидкости, т. е. произведение массы жидкости на ускорение свободного падения g: F = mg = Sgh.
Приравняем оба выражения для силы давления: PS = Sgh.
Разделив обе части этого равенства на площадь S, найдем давление жидкости на глубине h: P = gh,
где P = gh — гидростатическое давление, — плотность жидкости, h — высота столба жидкости.
Мы получили формулу гидростатического давления:гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой рассматривается давление.
Одно и то же количество воды, находясь в разных сосудах, может оказывать разное давление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создать очень большое давление.
Давление жидкости на дно не зависит от формы сосуда, а определяется только высотой уровня жидкости и ее плотностью. Во всех случаях, приведенных на рисунке 91, давление жидкости на дно сосудов одинаково.
Рис. 91.
Жидкость давит на данной глубине одинаково по всем направлениям — не только вниз, но и вверх, и в стороны. Следовательно, давление на стенку на данной глубине будет таким же, как и давление на горизонтальную площадку, расположенную на той же глубине.
Если над свободной поверхностью жидкости создается давление P0 то давление в жидкости на глубине будет: P = P0 + gh.
Силы давления на дно и на стенки можно рассчитать по формулам:
F= ghS — сила давления жидкости на горизонтальное дно, где Sд — площадь дна;
Fст.
=
Sст.
— сила давления жидкости на боковую
прямоугольную вертикальную стенку
сосуда, где Sст.
— площадь стенки.
Пример. В покоящейся жидкости свободная поверхность жидкости всегда горизонтальна. Нередко встречаются случаи, когда жидкость, покоясь относительно сосуда, движется вместе с ним. Если при этом сосуд движется равномерно и прямолинейно, то свободная поверхность жидкости будет горизонтальна. Но если сосуд движется с ускорением, то ситуация меняется и возникают вопросы о форме свободной поверхности жидкости, о распределении давления в ней.
Так, в случае горизонтального движения сосуда с ускорением в поле тяготения Земли любая часть жидкости массой m движется с тем же ускорением под действием равнодействующей силы давления , действующей со стороны остальной жидкости и силы тяжести m (рис. 92).
Рис. 92.
Основное уравнение динамики: m = + m .
В результате свободная поверхность жидкости не будет горизонтальна, а образует с горизонтом угол , который можно легко найти, если спроецировать основное уравнение динамики на горизонтальную и вертикальную оси:
N = ma; N = mg.
Отсюда:
tg
=
.
Давление на горизонтальную поверхность (горизонтальное дно) будет возрастать в направлении, противоположном ускорению.
Закон Архимеда. Условия плавания тел