- •Глава 8 гидрология водохранилищ
- •8.1. Назначение водохранилищ и их размещение на земном шаре
- •8.2. Типы водохранилищ
- •8.3. Основные характеристики водохранилищ
- •8.4. Водный режим водохранилищ
- •8.5. Термический и ледовый режим водохранилищ
- •8.6. Гидрохимический и гидробиологический режим водохранилищ
- •8.7. Заиление водохранилищ и переформирование их берегов
- •8.8. Водные массы водохранилищ
- •8.9. Влияние водохранилищ на речной сток и окружающую природную среду
- •Глава 9 гидрология болот
- •9.1. Происхождение болот и их распространение на земном шаре
- •9.2. Типы болот
- •9.3. Строение, морфология и гидрография торфяных болот
- •9.4. Развитие торфяного болота
- •9.5. Водный баланс и гидрологический режим болот
- •9.6. Влияние болот и их осушения на речной сток. Практическое значение болот
- •Глава 10
- •10.1. Мировой океан и его части. Классификация морей
- •10.2. Происхождение, строение и рельеф дна мирового океана. Донные отложения
- •10.2.1. Происхождение ложа океана
- •10.2.2. Рельеф дна Мирового океана
- •10.2.3. Донные отложения
- •10.3. Водный баланс мирового океана
- •10.4. Солевой состав и соленость вод океана
- •10.4.1. Солевой состав вод океана
- •10.4.2. Соленость морской воды и ее определение
- •10.4.3. Распределение солености в Мировом океане
- •10.5. Термический режим мирового океана
- •10.5.1. Тепловой баланс Мирового океана
- •10.5.2. Распределение температуры в Мировом океане
- •10.6. Плотность вод и их перемешивание
- •10.6.1. Факторы, определяющие плотность морской воды
- •10.6.2. Распределение плотности в Мировом океане
- •10.6.3. Вертикальная устойчивость и перемешивание вод
- •10.7. Морские льды
- •10.7.1. Ледообразование в море
- •10.7.2. Физические свойства морского льда
- •10.7.3. Движение льдов
- •10.7.4. Ледовитость океанов и морей
- •10.8. Оптические свойства морской воды
- •10.9. Акустические свойства морской воды
- •10.10. Волнение
- •10.10.1. Волны зыби
- •10.10.2. Ветровые волны
- •10.10.3. Деформация волн у берега
- •10.10.4. Волны цунами
- •10.10.5. Внутренние волны
- •10.11. Приливы
- •10.11.1. Основные элементы приливов
- •10.11.2. Приливообразующая сила
- •10.11.3. Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- •10.11.4. Деформация приливной волны у берега
- •10.11.5. Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- •10.11.6. Приливы в ограниченном водоеме. Сейши
- •10.12. Морские течения
- •10.12.1. Силы, формирующие течения. Классификация морских течений
- •10.12.2. Теория ветровых течений
- •10.12.3. Плотностные течения
- •10.12.4. Циркуляция вод в Мировом океане
- •10.13. Уровень океанов и морей
- •10.13.1. Кратковременные колебания уровня
- •10.13.2. Сезонные колебания уровня
- •10.13.3. Долгопериодные изменения уровня
- •10.14. Водные массы океана
- •10.14.1. Основы учения о водных массах
- •10.14.2. Основы t, s-анализа водных масс
- •10.14.3. Водные массы Мирового океана
- •10.15. Взаимодействие океана и атмосферы. Океан и климат
- •10.16. Ресурсы мирового океана и его экологическое состояние
- •10.16.1. Ресурсы Мирового океана
- •10.16.2. Экологическое состояние Мирового океана
- •Заключение
8.7. Заиление водохранилищ и переформирование их берегов
Водохранилища, как и озера, являются аккумуляторами наносов. В уравнении баланса наносов (7.24) для водохранилищ в приходной части преобладают поступление наносов с речным стоком R+реч и продукты размыва берегов Rбер (в первые десятилетия существования этих водоемов), а в расходной — аккумуляция наносов и сброс наносов с водой в нижний бьеф R-реч.
Так, по Н.А. Зиминовой, для Угличского водохранилища на реке Волге доля R+реч и в приходной части уравнения баланса наносов с 1940 по 1968 г. изменилась соответственно с 29 до 63% и с 68 до 30%, т. е. вклад размыва берегов в баланс наносов неуклонно уменьшался. За этот же период доля R-реч и Rакк изменилась соответственно с 35 до 68% и с 65 до 32%, т. е. доля транзитного выноса наносов увеличилась, а их аккумуляция уменьшилась. Отмеченные закономерности характерны для многих равнинных водохранилищ.
Отложение в водохранилище мелких (взвешенных) наносов называют заилением, крупных (влекомых) — занесением. Если не удается различить мелкие и крупные наносы, то процесс аккумуляции всей совокупности наносов в водохранилище называют заилением. В результате заиления формируется толща донных отложений водохранилища (см. рис. 6.23). При равномерном отложении наносов период заиления мертвого объема водохранилища τзл можно приближенно определить по формуле
τзл =Vмо/WR(1-σ), (8.1)
где Vмо —
мертвый объем водохранилища, м3;
WR
— средний годовой сток наносов реки,
м3; σ — доля стока наносов, проходящая
через водохранилище транзитом (для
равнинных водохранилищ, а может достигать
0,3—0,4, для глубоких горных водохранилищ
практически весь сток наносов реки
задерживается в водохранилище и σ
приближается к 0). Сток наносов реки, в
свою очередь, определяют по формуле WR
=
• 31,5 • 106/отл
где
— средний годовой расход наносов,
кг/с; 31,5 • 106 —количество секунд
в году; отл
— плотность донных отложений, равная
700—900 кг/м3 для илистых отложений,
1900—1300 кг/м3 для песчанистого ила
и илистого песка, 1500—2200 кг/м3 для
песков и гравия с галькой.
Интенсивность отложения наносов и период заиления водохранилища (т. е. время его «жизни») зависят от стока наносов реки и объема водохранилища. В равнинных водохранилищах на реках с небольшим стоком наносов ежегодное нарастание дна невелико. Так, на Иваньковском и Рыбинском водохранилищах на Волге ежегодно отлагается слой наносов, равный в среднем 0,2 и 0,25 см соответственно (при максимальных значениях 1,9 и 6,0 см/год). Период заиления таких водохранилищ весьма велик. Интенсивность заиления небольших водохранилищ на реках с большим стоком наносов, в особенности в засушливых районах, очень велика. Например, в США некоторые водохранилища в пустынной зоне заполнялись наносами за 10—15 лет.
После сооружения водохранилища и повышения уровня воды в зону волновой переработки (абразии) попадают берега водохранилища — бывшие склоны долины. В результате абразии, как и на озерах, формируются береговой уступ, и абразионная отмель в верхней части берегового склона (см. рис. 7.1). Наиболее интенсивно разрушаются сложенные лёссовидными грунтами берега водохранилищ в степной, полупустынной и пустынной зонах. За первые 10 лет существования водохранилища берег может отступить на 200 м и более. Так, в первые годы существования Цимлянского водохранилища на Дону, по данным С.Л. Вендрова, отмечалось отступание берега со средней интенсивностью 9 м/год (при максимальных величинах размыва 50 м/год). В результате разрушения берегов могут пострадать строения и сельскохозяйственные угодья.
Наиболее крупные фракции продуктов волнового разрушения берегов водохранилищ идут в основном на формирование аккумулятивной части отмели, а более мелкие отлагаются в его глубоководных местах или выносятся в нижний бьеф.
