- •Глава 8 гидрология водохранилищ
- •8.1. Назначение водохранилищ и их размещение на земном шаре
- •8.2. Типы водохранилищ
- •8.3. Основные характеристики водохранилищ
- •8.4. Водный режим водохранилищ
- •8.5. Термический и ледовый режим водохранилищ
- •8.6. Гидрохимический и гидробиологический режим водохранилищ
- •8.7. Заиление водохранилищ и переформирование их берегов
- •8.8. Водные массы водохранилищ
- •8.9. Влияние водохранилищ на речной сток и окружающую природную среду
- •Глава 9 гидрология болот
- •9.1. Происхождение болот и их распространение на земном шаре
- •9.2. Типы болот
- •9.3. Строение, морфология и гидрография торфяных болот
- •9.4. Развитие торфяного болота
- •9.5. Водный баланс и гидрологический режим болот
- •9.6. Влияние болот и их осушения на речной сток. Практическое значение болот
- •Глава 10
- •10.1. Мировой океан и его части. Классификация морей
- •10.2. Происхождение, строение и рельеф дна мирового океана. Донные отложения
- •10.2.1. Происхождение ложа океана
- •10.2.2. Рельеф дна Мирового океана
- •10.2.3. Донные отложения
- •10.3. Водный баланс мирового океана
- •10.4. Солевой состав и соленость вод океана
- •10.4.1. Солевой состав вод океана
- •10.4.2. Соленость морской воды и ее определение
- •10.4.3. Распределение солености в Мировом океане
- •10.5. Термический режим мирового океана
- •10.5.1. Тепловой баланс Мирового океана
- •10.5.2. Распределение температуры в Мировом океане
- •10.6. Плотность вод и их перемешивание
- •10.6.1. Факторы, определяющие плотность морской воды
- •10.6.2. Распределение плотности в Мировом океане
- •10.6.3. Вертикальная устойчивость и перемешивание вод
- •10.7. Морские льды
- •10.7.1. Ледообразование в море
- •10.7.2. Физические свойства морского льда
- •10.7.3. Движение льдов
- •10.7.4. Ледовитость океанов и морей
- •10.8. Оптические свойства морской воды
- •10.9. Акустические свойства морской воды
- •10.10. Волнение
- •10.10.1. Волны зыби
- •10.10.2. Ветровые волны
- •10.10.3. Деформация волн у берега
- •10.10.4. Волны цунами
- •10.10.5. Внутренние волны
- •10.11. Приливы
- •10.11.1. Основные элементы приливов
- •10.11.2. Приливообразующая сила
- •10.11.3. Статическая и динамическая теории приливов. Строение приливной волны и приливные течения
- •10.11.4. Деформация приливной волны у берега
- •10.11.5. Разложение уравнения приливной волны. Гармонические постоянные. Таблицы приливов
- •10.11.6. Приливы в ограниченном водоеме. Сейши
- •10.12. Морские течения
- •10.12.1. Силы, формирующие течения. Классификация морских течений
- •10.12.2. Теория ветровых течений
- •10.12.3. Плотностные течения
- •10.12.4. Циркуляция вод в Мировом океане
- •10.13. Уровень океанов и морей
- •10.13.1. Кратковременные колебания уровня
- •10.13.2. Сезонные колебания уровня
- •10.13.3. Долгопериодные изменения уровня
- •10.14. Водные массы океана
- •10.14.1. Основы учения о водных массах
- •10.14.2. Основы t, s-анализа водных масс
- •10.14.3. Водные массы Мирового океана
- •10.15. Взаимодействие океана и атмосферы. Океан и климат
- •10.16. Ресурсы мирового океана и его экологическое состояние
- •10.16.1. Ресурсы Мирового океана
- •10.16.2. Экологическое состояние Мирового океана
- •Заключение
10.11.6. Приливы в ограниченном водоеме. Сейши
Приливообразующая сила порождает приливную волну, которая по своей природе относится к вынужденным, но может распространяться и в виде свободной волны, на чем и основано построение котидальных карт. Возникнув в одном районе, она входит в другой, в котором может вызывать приливные колебания уже без прямого влияния приливообразующей силы. Такой прилив носит название индуцированного. Именно индуцированный прилив существует, например, в Белом море, небольшом по размерам.
В большом водоеме могут возникнуть приливные колебания под непосредственным действием приливообразующей силы, т. е. собственный прилив. В этом случае поверхность воды успевает принять положение, перпендикулярное к равнодействующей сил тяжести и приливообразующей. Так как последняя периодически изменяется, так же периодически будет изменяться и положение поверхности водоема, отмечаемой по берегам колебаниями уровня приливного характера, но уже в виде не поступательной волны, а стоячей.
Примером собственного прилива может служить прилив в Черном море. Длина моря (около 1000 км) достаточно велика для проявления действия приливообразующей силы и в то же время недостаточна, чтобы считать значение этой силы на акватории моря одинаковой. Следовательно, уровень моря в каждый данный момент находится в равновесии, а вся масса воды — в колебательном движении. Такого рода колебания, как и для озер (см. разд. 7.5), носят название сейш. Эти стоячие волны относятся к типу длинных, период их колебаний зависит от размеров водоема, он определяется по формуле (7.17) при п=1, т.е.:
= 2L/ , (10.23)
где L — длина моря, м; H — его глубина, м.
Для Черного моря, куда индуцированный океаном прилив не доходит, собственный прилив может иметь величину до 12 см по крайним границам, причем, когда полная вода на востоке моря, то на западе малая, и наоборот. А узловая линия с полным отсутствием колебаний уровня лежит приблизительно посередине моря на меридиане мыса Сарыч на южном берегу Крыма.
Дж. Дарвин полагал, что не только для Черного моря, но и для водоемов длиной до 2000 м можно считать, что уровень моря успевает подчиняться изменениям приливообразующей силы и принимать положение равновесия.
Фактически в каждой точке Мирового океана приливные колебания уровня вызваны сочетанием местного и индуцированного приливов, только в разных местах преобладает один из них. Если периоды вынужденного прилива и свободного местного прилива совпадают, то возникает резонанс, усиливающий приливные колебания. Именно так рассматривают генеральную картину распределения приливов в Мировом океане.
Одно из важнейших направлений изучения приливов состоит в уточнении предсказания приливных уровней и течений. Помимо таблиц и атласов приливных колебаний уровня и течений, которые предвычисляются по гармоническим постоянным и астрономическим аргументам, необходим учет местных условий и влияния ветра, который может существенно влиять на уровень воды.
10.12. Морские течения
10.12.1. Силы, формирующие течения. Классификация морских течений
Течения в океане возбуждаются и существуют под действием двух сил: трения ветра и силы горизонтального градиента давления, соответственно и течения разделяются на дрейфовые, или фрикционные, и градиентные, или гравитационные.
Причин же, порождающих течения, может быть несколько: ветер, разность плотностей воды, разность уровней, созданная атмосферным воздействием или притоком воды из рек, и др. Эти факторы приводят воду моря в движение, которое приобретает поступательный характер. Если причины, вызывающие поступательное движение воды, действуют кратковременно, то перенос невелик, и течения имеют эпизодический, кратковременный срок существования — это случайное течение. Если же определяющий фактор действует длительно, устойчиво, то образуется так называемое постоянное течение, линейный масштаб которого порядка 1000 км. Именно такие течения обеспечивают обмен вод, теплоты и солей между различными частями Мирового океана.
На течения влияют не только силы, вызвавшие их, но и силы вторичные, проявляющиеся вместе с возникновением течения: сила внутреннего трения (вязкость) и сила Кориолиса. Эти силы сами течения не вызывают, но они влияют на существующее течение. Сила трения на границах течения тормозит его, поглощая часть кинетической энергии потока, а сила Кориолиса вынуждает воду отклоняться от своего направления в Северном полушарии вправо, в Южном — влево.
Лучше всего разработаны две теории течений: теория Экмана, связанная с фрикционными течениями, и теория Бьеркнеса, связанная с плотностными течениями.
