- •Гидрология полный курс для экологов
- •Введение
- •Вода в природе и жизни человека
- •Понятие о гидросфере
- •Границы гидросферы
- •Образование гидросферы
- •Водные объекты
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод в народном хозяйстве и практическое значение гидрологии
- •Бассейновому органу и
- •Администрации территории — субъекту Российской Федерации.
- •1) Поверхностные водные объекты — водотоки (реки, ручьи, каналы) и водоемы (озера, водохранилища, болота, пруды), ледники и снежники;
- •2) Внутренние морские воды (расположены в сторону берега от границы территориальных вод);
- •3) Территориальные моря России (прибрежные воды шириной 12 морских миль).
- •Краткие сведения из истории гидрологии
- •Глава 1
- •1. Химические и физические свойства природных вод
- •1.1. Вода как химическое соединение, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды
- •1.3.1 Агрегатные состояния воды и фазовые переходы
- •1.3.2. Плотность воды
- •1.3.3. Тепловые свойства воды
- •1.3.4. Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •2.2. Водный баланс
- •2.3. Баланс содержащихся в воде веществ
- •2.4. Тепловой баланс
- •2.5. Основные закономерности движения природных вод
- •2.5.1. Классификация видов движения воды
- •2.5.2. Расход, энергия, работа и мощность водных потоков
- •2.5.3. Силы, действующие в водных объектах
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •3.1. Вода на земном шаре
- •3.2. Современные и ожидаемые изменения климата и гидросферы земли
- •3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •3.4. Круговорот воды на земном шаре
- •3.5. Круговорот содержащихся в воде веществ
- •3.6. Влияние гидрологических процессов на природные условия
- •3.7. Водные ресурсы земного шара, частей света и россии
- •Глава 4 гидрология ледников
- •4.1. Происхождение ледников и их распространение на земном шаре
- •4.2. Типы ледников
- •4.3. Образование и строение ледников
- •4.4. Питание и абляция ледников, баланс льда и воды в ледниках
- •4.5. Режим и движение ледников
- •4.6. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •5.1. Происхождение подземных вод и их распространение на земном шаре
- •5.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •5.2.1. Физические свойства грунтов
- •5.2.2. Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •5.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •5.3.1. Классификации подземных вод
- •5.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •5.3.3. Воды зоны насыщения. Грунтовые воды
- •5.3.4. Артезианские и глубинные воды
- •5.3.5. Другие типы подземных вод
- •5.4. Движение подземных вод
- •5.5. Водный баланс и режим подземных вод
- •5.5.1. Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •5.5.3. Режим грунтовых вод
- •5.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •5.7. Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •6.1. Реки и их распространение на земном шаре
- •6.2. Типы рек
- •6.3. Морфология и морфометрия реки и ее бассейна
- •6.3.1. Водосбор и бассейн реки
- •6.3.2. Морфометрические характеристики бассейна реки
- •6.3.3. Физико-географические и геологические характеристики бассейна реки
- •6.3.4. Река и речная сеть
- •6.3.5. Долина и русло реки
- •6.3.6. Продольный профиль реки
- •6.4. Питание рек
- •6.4.1. Виды питания рек
- •6.4.2. Классификация рек по видам питания
- •6.5. Расходование воды в бассейне реки
- •6.6. Водный баланс бассейна реки
- •6.6.1. Уравнение водного баланса бассейна реки
- •6.6.2. Структура водного баланса бассейна реки'
- •6.7. Водный режим рек
- •6.7.1. Виды колебаний водности рек
- •6.7.2. Фазы водного режима рек. Половодье, паводки, межень
- •6.7.3. Расчленение гидрографа по видам питания
- •6.7.4. Классификация рек по водному режиму
- •6.8. Речной сток
- •6.8.1. Составляющие речного стока
- •6.8.2. Факторы и количественные характеристики стока воды
- •6.8.3. Пространственное распределение стока воды на территории снг
- •6.9. Движение воды в реках
- •6.9.1. Распределение скоростей течения в речном потоки
- •6.9.2. Динамика речного потока
- •6.9.3. Закономерности трансформации паводков
- •6.10. Движение речных наносов
- •6.10.1. Происхождение, характеристики и классификация речных наносов
- •6.10.2. Движение влекомых наносов
- •6.10.3. Движение взвешенных наносов
- •6.10.4. Сток наносов
- •6.11. Русловые процессы
- •6.11.1. Физические причины и типизация русловых процессов
- •6.11.2. Микроформы речного русла и их изменения
- •6.11.3. Мезоформы речного русла и их изменения
- •6.11.4. Макроформы речного русла и их изменения
- •6.11.5. Деформации продольного профиля русла
- •6.11.6. Устойчивость речного русла
- •6.12. Термический и ледовый режим рек
- •6.12.1. Тепловой баланс участка реки
- •6.12.2. Термический режим рек
- •6.12.3. Ледовые явления
- •6.13. Основные черты гидрохимического и гидробиологического режима рек
- •6.13.1. Гидрохимический режим рек
- •6.13.2. Гидробиологические особенности рек
- •6.14. Устья рек
- •6.14.1. Факторы формирования, классификация и районирование устьев рек
- •6.14.2. Особенности гидрологического режима устьевого участка реки
- •6.14.3. Особенности гидрологического режима устьевого взморья
- •6.15. Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •6.15.1. Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •6.15.2. Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •6.15.3. Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •7.3. Морфология и морфометрия озер
- •7.4. Водный баланс озер
- •7.4.1. Уравнение водного баланса озера
- •7.4.2. Структура водного баланса озера
- •7.4.3. Водообмен в озере
- •7.5. Колебания уровня воды в озерах
- •7.7. Термический и ледовый режим озер
- •7.7.1. Тепловой баланс озер
- •7.7.2. Термическая классификация озер
- •7.7.3. Термический режим озер в условиях умеренного климата
- •7.7.4. Ледовые явления на озерах
- •7.8. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •7.8.1. Гидрохимические характеристики озер
- •7.8.2. Гидробиологические характеристики озер
- •7.8.3. Наносы и донные отложения в озерах
- •7.9. Водные массы озер
- •7.10. Изменения гидрологического режима каспийского и аральского морей
- •7.10.1. Проблемы, связанные с судьбой Каспийского и Аральского морей
- •7.10.2. Каспийское море
- •7.10.3. Аральское море
- •7.11. Влияние озер на речной сток. Хозяйственное использование озер
7.7.3. Термический режим озер в условиях умеренного климата
Термический режим озер третьей группы, по классификации Фореля, и димиктических, по классификации Хатчинсона, наиболее сложен. Рассмотрим достаточно глубокое слабопроточное пресноводное озеро в условиях умеренного климата. В режиме температуры воды в озере выделяют четыре сезона (периода): весеннего нагревания, летнего нагревания, осеннего охлаждения, зимнего охлаждения.
Зимой подо льдом в озере наблюдается обратная температурная стратификация (рис. 7.9, в, 1). В поверхностном слое температура близка к 0°С, в придонном слое — около 3—4 °С (в более мелких водоемах у дна температура немного ниже).
В период весеннего нагревания температура воды в поверхностном слое повышается. Этот процесс начинается, когда озеро еще покрыто льдом, и продолжается после схода ледяного покрова. Когда температура поверхностного слоя станет несколько выше температуры нижерасположенных слоев, нарушится вертикальная плотностная устойчивость вод: более теплая и более плотная вода начинает опускаться, а менее теплая и менее плотная — подниматься к поверхности. Возникшее интенсивное вертикальное конвективное перемешивание приведет к выравниванию температуры по вертикали (рис. 7.9, в, 2), наступает весенняя гомотермия (обычно при температуре от 2 до 4°С). В это время создаются благоприятные предпосылки и для вертикального динамического (ветрового) перемешивания. Вода в толще озера может обновиться.
Рис. 7.9. Схема температурной стратификации в озерах полярного (а), тропического (б)
и умеренного (в) климатов:
1 — обратная температурная стратификация зимой; 2 — весенняя гомотермия; 3 — прямая температурная стратификация летом; 4 — осенняя гомотермия; А — весеннее нагревание; Б — летнее нагревание; В — осеннее охлаждение; Г—предзимнее и зимнее охлаждение; I — эпилимнион, II — металимнион, III — гиполимнион, IV — ледяной покров
В период летнего нагревания в озере устанавливается прямая температурная стратификация (рис. 7.9, в, 3). Наиболее высокую температуру приобретает поверхностный слой воды — эпилимнион. Ниже этого слоя лежит так называемый слой температурного скачка — металимнион. Основная же толща озерных вод сохраняет относительную невысокую температуру. Этот слой называется гиполимнион. В эпилимнионе температура воды может повышаться до 20—25 °С, в гиполимнионе температура может сохраняться равной 5—6 °С. Таким образом, в слое скачка температура может резко изменяться на величину до 20 °С (при этом вертикальные градиенты температуры иногда достигают 8—10 °С на 1 м). Пример вертикального распределения температуры в глубоком озере в летнее время приведен на рис. 7.10. На рисунке одновременно показано вертикальное распределение содержания кислорода и СО2, о чем будет подробнее сказано ниже.
Рис. 7.10. Типичное распределение по глубине температуры воды (1), содержания кислорода (2) и диоксида углерода (3) в глубоком озере в летнее время
В период осеннего охлаждения температура в поверхностном слое понижается. После того как она станет несколько ниже температуры нижерасположенных слоев, более плотные воды начинают опускаться вниз, возникает активное конвективное перемешивание. В результате устанавливается осенняя гомотермия (см. рис. 7.9, в, 4). Как и во время весенней гомотермии, создаются благоприятные условия и для вертикального динамического перемешивания. Вода в придонных слоях обновляется. Гомотермия обычно устанавливается при температуре около 4 °С, а иногда (при сильном ветровом воздействии на поверхность озера) и при несколько большей температуре (5—6°С и выше).
Наконец, наступает период предзимнего и зимнего охлаждения. В это время температура в поверхностном слое постепенно понижается до температуры замерзания (0 °С для пресных вод), в толще воды устанавливается обратная температурная стратификация, а на поверхности озера образуется ледяной покров (см. рис. 7.9, в, 1). Температура в придонных слоях снижается до 4, а иногда и до 2—3 °С, а в очень мелководных озерах — и до 0,5—1 °С.
Но вода на глубинах озера не достигает 0 °С и не замерзает, что предохраняет живые организмы от гибели.
Некоторые нарушения в описанные закономерности изменения вертикального распределения температуры в озерах может вносить сильное ветровое волнение, вызывающее динамическое перемешивание. В мелководных водоемах динамическое перемешивание может в ослабленном виде распространяться до самого дна. В таких случаях в гиполимнионе температура воды будет, конечно, выше упомянутых 5—6 °С. Иногда в результате динамического перемешивания гомотермия в мелководном водоеме может установиться на непродолжительное время даже летом. Кроме того, вызванное сильным ветром и волнением динамическое перемешивание часто приводит к «размыванию» эпилимниона и заглублению слоя скачка. Последующее нагревание поверхностного слоя воды создаст новый эпилимнион и новый слой скачка. В результате в водоеме может сформироваться довольно сложная вертикальная структура вод с 2—3 слоями скачка температуры.
Изменяет распределение температуры и антропогенное воздействие, проявляющееся либо в сбросе в озеро нагретых вод (например, отработанных вод ГРЭС), либо в искусственном перемешивании вод в небольших водоемах для обогащения придонных слоев кислородом в зимний подледный период.
Внутригодовое изменение температуры воды в рассматриваемом озере схематично представлено на рис. 7.11. Обращают на себя внимание такие основные особенности внутригодового хода температуры воды в озере.
Во-первых, изменения температуры на поверхности воды отстают от изменений температуры воздуха. Во-вторых, отрицательные значения температура воды в пресноводном озере принимать не может, поэтому средняя годовая температура воды в поверхностном слое озера выше, чем средняя годовая температура воздуха. В-третьих, размах колебаний температуры воды в поверхностном слое существенно больше, чем на глубине. Если у поверхности эта величина может достигать 15—20 и даже 20—25 °С, то у дна в глубоком озере — всего 2—4 °С. Изменения температуры на глубине всегда отстают во времени от ее изменений в вышележащих слоях.
На рис. 7.11 выделены характерные периоды термического режима глубокого озера. Период весеннего нагревания А начинается, когда озеро еще покрыто льдом, но уже повышается температура воды (точка а), а заканчивается, когда температура в поверхностном и придонном слоях выравнивается и становится равной приблизительно 4 °С (точка Б). Период летнего нагревания Б оканчивается при достижении температурой в поверхностном слое максимума (точка с). В придонном слое максимум температуры наступает позже (точка с'). Период осеннего охлаждения В заканчивается, когда температура в поверхностном и придонном слоях выравнивается (приблизительно при 4 °С, точка d). И наконец, период предзимнего и зимнего охлаждения Г оканчивается, когда в конце зимы температура придонного слоя достигнет минимума (точка а'), а в поверхностном слое температура начинает повышаться (точка а).
Суточные колебания температуры воды, как и сезонные, также затухают с глубиной.
Рис. 7.11. Схема внутригодовых изменений температуры воздуха (1) и температуры воды в поверхностном (2) и придонном (3) слоях глубокого пресноводного озера в умеренных широтах Северного полушария; 4 — ледостав; периоды: А — весеннего нагревания, Б — летнего нагревания, В — осеннего охлаждения, Г — предзимнего и зимнего охлаждения (другие обозначения см. в тексте)
В процессе нагревания и охлаждения озера может отмечаться большая горизонтальная неоднородность температуры воды, особенно в больших озерах. На прибрежных мелководьях вода быстрее прогревается и быстрее остывает. В центральных районах озера благодаря инерционности тепловых процессов в больших объемах воды температура изменяется более медленно.
Наиболее характерна для крупных и глубоких озер в условиях умеренного климата горизонтальная неоднородность температуры воды весной и осенью. В процессе весеннего нагревания температура воды в прибрежных районах быстрее достигает 4 °С, чем в центральной части озера. При последующем нагревании между прибрежными водами, нагретыми до температуры выше 4 °С, и водами центральной части озера с температурой ниже 4 °С формируется так называемый термический бар — вертикальный пояс с температурой воды 4 °С (рис. 7.12, а). В этом поясе вода, имеющая повышенную плотность, опускается. Термический бар изолирует прибрежные быстро нагревающиеся воды (теплоактивную область — ТАО) от более холодной воды центральной части озера (теплоинертной области — ТИО). Водо- и теплообмен через термический бар затруднен. По мере общего нагревания водоема термический бар смещается к центру озера и в конце концов исчезает.
Рис. 7.12. Схема термического бара (по А.И. Тихомирову) весной (а) и осенью (б):
1 — термический бар; 2—циркуляция вод; 3— изотермы
Осенью прибрежные воды охлаждаются до 4 °С быстрее, чем воды центральной части озера. При последующем охлаждении вод, так же как и весной, возникает термический бар (рис. 7.12, б), отделяющий более холодные прибрежные воды температурой ниже 4 °С от вод температурой выше 4 °С. Как и весной, термический бар постепенно смещается к центру озера. Будучи, прежде всего своеобразным тепловым барьером в озерной толще, термический бар служит также и динамическим барьером между прибрежными водами и водами центральной части озера, которые благодаря этому могут обладать и существенно различными физико-химическими и гидробиологическими свойствами. Поэтому роль термического бара в водоемах чрезвычайно велика. Это явление впервые было обнаружено еще Ф.А. Форелем и детально исследовано отечественным озероведом А.И. Тихомировым.
Своеобразны изменения температуры воды во время сгонно-нагонных явлений. Летом у наветренного («нагонного») берега, куда ветер сгоняет воду верхнего нагретого слоя, температура воды может несколько повыситься. Зато у подветренного («сгонного») берега, где благодаря сгонно-нагонной циркуляции на поверхность поднимаются глубинные воды, температура воды может резко упасть. Так, по наблюдениям Б.Б. Богословского, на Онежском озере во время ветра в начале августа у наветренного берега температура воды была 15,5—16,5 °С, а у подветренного — всего 5,7—5,8 °С.
Термический режим озер с повышенной минерализацией воды существенно отличается от термического режима пресноводных озер. Летом сильно минерализованные воды могут нагреваться до 50—70 °С. Зимой такая вода в поверхностном слое, не замерзая, охлаждается до значительной отрицательной температуры. У дна же может сохраниться в течение всего года положительная, иногда заметно повышенная температура воды. Термический режим озер с солоноватой или соленой водой (водой морской солености) имеет много общего с термическим режимом морей.
Интересное явление (так называемая термическая инверсия) наблюдается осенью в прибрежной зоне озер (и морей тоже) с солоноватой и соленой водой, если в этом месте в водоем впадает река. Осенью обычно отмечается заметный контраст в температуре речной воды (она уже охладилась) и морской воды (она еще сохраняет повышенную температуру). В результате в поверхностном слое озера вблизи устья реки вода оказывается холоднее, чем в нижележащих слоях. Вертикальная плотностная устойчивость вод при этом не нарушается: в поверхностном слое располагается хотя и более холодная, но опресненная и поэтому менее плотная вода, а ниже — хотя и более теплая, но более соленая и поэтому более плотная вода.
