- •Гидрология полный курс для экологов
- •Введение
- •Вода в природе и жизни человека
- •Понятие о гидросфере
- •Границы гидросферы
- •Образование гидросферы
- •Водные объекты
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод в народном хозяйстве и практическое значение гидрологии
- •Бассейновому органу и
- •Администрации территории — субъекту Российской Федерации.
- •1) Поверхностные водные объекты — водотоки (реки, ручьи, каналы) и водоемы (озера, водохранилища, болота, пруды), ледники и снежники;
- •2) Внутренние морские воды (расположены в сторону берега от границы территориальных вод);
- •3) Территориальные моря России (прибрежные воды шириной 12 морских миль).
- •Краткие сведения из истории гидрологии
- •Глава 1
- •1. Химические и физические свойства природных вод
- •1.1. Вода как химическое соединение, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды
- •1.3.1 Агрегатные состояния воды и фазовые переходы
- •1.3.2. Плотность воды
- •1.3.3. Тепловые свойства воды
- •1.3.4. Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •2.2. Водный баланс
- •2.3. Баланс содержащихся в воде веществ
- •2.4. Тепловой баланс
- •2.5. Основные закономерности движения природных вод
- •2.5.1. Классификация видов движения воды
- •2.5.2. Расход, энергия, работа и мощность водных потоков
- •2.5.3. Силы, действующие в водных объектах
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •3.1. Вода на земном шаре
- •3.2. Современные и ожидаемые изменения климата и гидросферы земли
- •3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •3.4. Круговорот воды на земном шаре
- •3.5. Круговорот содержащихся в воде веществ
- •3.6. Влияние гидрологических процессов на природные условия
- •3.7. Водные ресурсы земного шара, частей света и россии
- •Глава 4 гидрология ледников
- •4.1. Происхождение ледников и их распространение на земном шаре
- •4.2. Типы ледников
- •4.3. Образование и строение ледников
- •4.4. Питание и абляция ледников, баланс льда и воды в ледниках
- •4.5. Режим и движение ледников
- •4.6. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •5.1. Происхождение подземных вод и их распространение на земном шаре
- •5.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •5.2.1. Физические свойства грунтов
- •5.2.2. Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •5.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •5.3.1. Классификации подземных вод
- •5.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •5.3.3. Воды зоны насыщения. Грунтовые воды
- •5.3.4. Артезианские и глубинные воды
- •5.3.5. Другие типы подземных вод
- •5.4. Движение подземных вод
- •5.5. Водный баланс и режим подземных вод
- •5.5.1. Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •5.5.3. Режим грунтовых вод
- •5.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •5.7. Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •6.1. Реки и их распространение на земном шаре
- •6.2. Типы рек
- •6.3. Морфология и морфометрия реки и ее бассейна
- •6.3.1. Водосбор и бассейн реки
- •6.3.2. Морфометрические характеристики бассейна реки
- •6.3.3. Физико-географические и геологические характеристики бассейна реки
- •6.3.4. Река и речная сеть
- •6.3.5. Долина и русло реки
- •6.3.6. Продольный профиль реки
- •6.4. Питание рек
- •6.4.1. Виды питания рек
- •6.4.2. Классификация рек по видам питания
- •6.5. Расходование воды в бассейне реки
- •6.6. Водный баланс бассейна реки
- •6.6.1. Уравнение водного баланса бассейна реки
- •6.6.2. Структура водного баланса бассейна реки'
- •6.7. Водный режим рек
- •6.7.1. Виды колебаний водности рек
- •6.7.2. Фазы водного режима рек. Половодье, паводки, межень
- •6.7.3. Расчленение гидрографа по видам питания
- •6.7.4. Классификация рек по водному режиму
- •6.8. Речной сток
- •6.8.1. Составляющие речного стока
- •6.8.2. Факторы и количественные характеристики стока воды
- •6.8.3. Пространственное распределение стока воды на территории снг
- •6.9. Движение воды в реках
- •6.9.1. Распределение скоростей течения в речном потоки
- •6.9.2. Динамика речного потока
- •6.9.3. Закономерности трансформации паводков
- •6.10. Движение речных наносов
- •6.10.1. Происхождение, характеристики и классификация речных наносов
- •6.10.2. Движение влекомых наносов
- •6.10.3. Движение взвешенных наносов
- •6.10.4. Сток наносов
- •6.11. Русловые процессы
- •6.11.1. Физические причины и типизация русловых процессов
- •6.11.2. Микроформы речного русла и их изменения
- •6.11.3. Мезоформы речного русла и их изменения
- •6.11.4. Макроформы речного русла и их изменения
- •6.11.5. Деформации продольного профиля русла
- •6.11.6. Устойчивость речного русла
- •6.12. Термический и ледовый режим рек
- •6.12.1. Тепловой баланс участка реки
- •6.12.2. Термический режим рек
- •6.12.3. Ледовые явления
- •6.13. Основные черты гидрохимического и гидробиологического режима рек
- •6.13.1. Гидрохимический режим рек
- •6.13.2. Гидробиологические особенности рек
- •6.14. Устья рек
- •6.14.1. Факторы формирования, классификация и районирование устьев рек
- •6.14.2. Особенности гидрологического режима устьевого участка реки
- •6.14.3. Особенности гидрологического режима устьевого взморья
- •6.15. Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •6.15.1. Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •6.15.2. Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •6.15.3. Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •7.3. Морфология и морфометрия озер
- •7.4. Водный баланс озер
- •7.4.1. Уравнение водного баланса озера
- •7.4.2. Структура водного баланса озера
- •7.4.3. Водообмен в озере
- •7.5. Колебания уровня воды в озерах
- •7.7. Термический и ледовый режим озер
- •7.7.1. Тепловой баланс озер
- •7.7.2. Термическая классификация озер
- •7.7.3. Термический режим озер в условиях умеренного климата
- •7.7.4. Ледовые явления на озерах
- •7.8. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •7.8.1. Гидрохимические характеристики озер
- •7.8.2. Гидробиологические характеристики озер
- •7.8.3. Наносы и донные отложения в озерах
- •7.9. Водные массы озер
- •7.10. Изменения гидрологического режима каспийского и аральского морей
- •7.10.1. Проблемы, связанные с судьбой Каспийского и Аральского морей
- •7.10.2. Каспийское море
- •7.10.3. Аральское море
- •7.11. Влияние озер на речной сток. Хозяйственное использование озер
6.10.4. Сток наносов
С
Рис. 6.17. Типичное
распределение мутности воды по глубине
речного потока при крупности взвешенных
наносов:
1 — наибольшей; 2 — средней;
3 — наименьшей
Rтр
= sтрQ
= k
, (6.45)
где sтр — мутность воды, соответствующая транспортирующей способности потока; v — средняя скорость потока; hcp — его средняя глубина; w — средняя гидравлическая крупность частиц наносов. В нашей стране и за рубежом предложено много разных формул вида (6.45). При этом мутность воды sтр, соответствующую транспортирующей способности потока (т.е. предельно возможную мутность при данных гидравлических условиях), часто выражают как функцию средней скорости течения: sтр = avn, где а и n — параметры, причем п изменяется от 2 до 4.
В реальных условиях фактический расход наносов в реке и транспортирующая способность потока могут не совпадать, что и становится причиной русловых деформаций.
Сток наносов реки (прежде всего взвешенных наносов) обычно рассчитывают по построенным на основе измерений связям расхода воды и расхода взвешенных наносов R=f(Q). У такой связи имеются две важные особенности: она нелинейна, причем R растет быстрее, чем Q; очень приближенно эту зависимость иногда можно записать в виде степенного уравнения:
R=kQm, (6.46)
где, по Н.И. Маккавееву, т=2÷3; очень часто связь между R и Q оказывается неоднозначной (петлеобразной). Это объясняется несовпадением изменения в реках расходов воды и расходов наносов во времени (рис. 6.18). Максимальная мутность воды в реках (и максимальные расходы наносов тоже) обычно опережает максимум расхода воды и отмечается на подъеме половодья или паводка. В это время идет наиболее активный смыв грунтов с поверхности водосбора.
Рис. 6.18. Типичные графики изменения расходов воды и взвешенных наносов (а)
и связи между ними (б):
1 — подъем половодья; 2— спад половодья (I—XII — месяцы)
С помощью графика
связи R=f(Q)
по известным
средним суточным значениям Q
легко
определить и соответствующие величины
.
Средние
расходы наносов за любой период
определяют
точно так же, как и средние расходы воды
(см. формулы 6.18— 6.19)). Сток наносов
рассчитывают по формуле, аналогичной
(6.20):
Wн= ∆t, (6.47)
где сток наносов Wн, кг; средний расход наносов , кг/с; интервал времени ∆t, с. Сток наносов чаще удобнее представить не в килограммах, а в тоннах или даже в миллионах тонн. В этих случаях применяют формулы
Wн (т)= ∆t 10-3, (6.48)
Wн (млн т) = ∆t 10-9. (6.49)
Если речь идет о годовых величинах, то вместо (6.49) записывают
Wн (млн т) = 31,5 10-3. (6.50)
Модулем стока наносов называют сток наносов в тоннах с 1 км2 площади водосбора:
Мн=Wн/F. (6.51)
Для годовых величин стока наносов получим Мн, т/км2:
Mн= 31,5 103/F. (6.52)
Модуль стока наносов характеризует эрозионную деятельность речных потоков (напомним, однако, что фактическая денудация в бассейнах рек во много раз больше модуля стока наносов, рассчитанного только что описанными способами, так как огромное количество смытых со склонов наносов не попадает в реки, а отлагается у подножья склонов, в устьях балок, оврагов, малых притоков, на поймах).
Модуль стока взвешенных наносов и средняя мутность воды рек, так же как и модуль стока воды, неравномерно распределены по территории. Так, на севере Европейской территории России (тундра, лесная зона) он часто не превышает 1—2 т/км2 в год, в северной и западных частях Европейской равнины повышается до 10–20 т/км2. На юге Европейской территории бывшего СССР он достигает 50—100 т/км2, а в ряде районов Кавказа — даже 500 т/км2 в год. Для бассейнов некоторых рек мира модуль стока взвешенных наносов в естественных условиях стока составлял: у Волги — 10,3 т/км2, Дуная — 63,6, Терека — 350, Хуанхэ — 1590 т/км2 в год. Мутность рек также довольно закономерно распределяется по территории. Так, например, средняя годовая мутность рек на севере Европейской части России весьма невелика — 10—50 г/м3, в бассейнах Оки, Днепра, Дона увеличивается до 150—500 г/м3, на Северном Кавказе иногда превышает 1000 г/м3.
Из суммарного годового стока наносов всех рек мира (15 700 млн т) наибольшая доля в естественных условиях приходилась на Амазонку (1200 млн т), Хуанхэ (1185 млн т), Ганг с Брахмапутрой (1060 млн т), Янцзы (471 млн т), Миссисипи (400 млн т) (см. табл. 6.1). Среди наиболее мутных рек на планете — Хуанхэ (средняя годовая мутность воды более 25 кг/м3, а максимальная — в 10 раз больше), Инд, Ганг, Янцзы, Амударья, Терек.
Сток наносов рек испытывает изменения, сходные с изменениями стока воды (см. разд. 6.7.1). Однако, поскольку связь между расходами воды и взвешенных наносов нелинейная (см. формулу (6.46)), как многолетние, так и сезонные колебания стока наносов рек обычно более значительные, чем стока воды (см., например, рис. 6.18, а).
Так же как сток воды, сток наносов рек увеличивается в холодные и влажные и уменьшается в теплые и засушливые климатические периоды. Вместе с тем в изменениях стока наносов рек отмечаются два проявления антропогенных факторов. Сведение лесов и распашка склонов ведут к усилению эрозии в речных бассейнах и, как следствие, к увеличению стока наносов рек. В Европе периодами существенного увеличения стока наносов рек были эпохи Римской империи и Возрождения, а также XVIII — начало XX вв. Факты увеличения стока наносов рек в эти периоды подтверждены косвенно — по возрастанию интенсивности выдвижения дельт некоторых рек (Эбро, Роны, По, Тибра) в Средиземное море. Наоборот, во второй половине XX в. начал действовать (и в противоположном направлении) другой сильнейший антропогенный фактор — отложение речных наносов в водохранилищах, активное сооружение которых происходило во многих странах мира в это время. В результате гидротехнического строительства на реках сток наносов многих рек заметно уменьшился (см. табл. 6.1 и 6.2). Сток наносов таких рек, как Волга, Дунай, Дон, Кура, Енисей, Миссисипи, сократился в 1,3—3 раза; Сулак, Тибр, Нил — в 8—10 раз; Эбро — в 250 (!) раз. Степень антропогенного уменьшения стока наносов рек зависит от параметров водохранилища (объема, высоты плотины) и от расстояния рассматриваемого гидроствора от гидроузла: чем ближе створ к плотине, тем сильнее выражено сокращение стока, так как ниже по течению обычно начинается крупномасштабный размыв русла и частичное восстановление транспортирующей способности речного потока. Так, на Нижнем Дунае (ниже по течению плотины водохранилища Железные Ворота) сток наносов восстанавливается приблизительно наполовину. Значительное сокращение стока наносов р. Эбро в Испании объясняется близостью к устью реки двух крупных водохранилищ.
