Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гл.1-7.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
5.99 Mб
Скачать

6.9.3. Закономерности трансформации паводков

При движении вдоль речного русла паводки (паводочные волны) трансформируются. Это проявляется в уменьшении высоты и возрастании продолжительности паводка (распластывании паводка), в уменьшении скорости его перемещения и в изменении формы паводочной волны (рис. 6.15). Эти особенности движения паводка объясняются закономерностями распространения любых волн на воде — гребень волны перемещается быстрее ее подошвы, влиянием шероховатости русла и выходом паводочных вод на пойму. Скорость перемещения паводочной волны обычно больше скорости движения самой воды в 1,2—1,5 раза. Пример распространения паводка вдоль Дуная на протяжении более 2 тыс. км был рассмотрен в разд. 6.7.2.

При перемещении в реках волн паводков (а также и половодья) изменение уровня воды H, расхода воды Q, средней скорости течения v, уклона водной поверхности I происходит несинхронно. Гидравлическими расчетами можно доказать, что в любом створе реки должна наблюдаться следующая последовательность наступления максимальных значений перечисленных характеристик: сначала своего максимума достигает уклон, затем скорость течения, потом наступает максимальное значение расхода воды и лишь после всего максимальной величины достигает уровень воды (пик паводка). Несинхронность наступления максимальных значений расхода и уровня воды во время паводка или половодья предопределяет неоднозначность «кривой расходов»; на графике Q=f(H) появляется паводочная петля (см. рис. 6.13, б).

а)

Рис. 6.15. Схема трансформации паводочной волны (по М. А. Великанову):

а — графики изменения уровня воды в двух пунктах, расположенных последовательно вдоль русла (1 и 2);

б — продольные профили паводочной волны и ее длины в два последовательных момента времени

6.10. Движение речных наносов

6.10.1. Происхождение, характеристики и классификация речных наносов

Главными источниками поступления наносов в реки служат поверхность водосборов, подвергающаяся эрозии в период дождей и снеготаяния, и сами русла рек, размываемые речным потоком. Эрозия водосборов — процесс очень сложный, зависящий как от эродирующей способности стекающих по его поверхности дождевых и талых вод, так и от противоэрозионной устойчивости почв и грунтов водосбора. Эрозия поверхности водосборов (и поступление ее продуктов в реки) обычно тем больше, чем сильнее дожди и интенсивнее снеготаяние, чем больше неровности рельефа, рыхлее грунты (наиболее легко подвергаются эрозии лёссовые грунты), менее развит растительный покров, сильнее распаханность склонов. Эрозия речных русел тем сильнее, чем больше скорости течения в реках и менее устойчивы грунты, слагающие дно и берега. Часть наносов поступает в русло рек при абразии (волновом разрушении) берегов водохранилищ и речных берегов на широких плесах. Наносы, слагающие дно рек, называют донными отложениями, или аллювием.

Наибольшую концентрацию наносов (мутность воды) имеют реки с паводочным режимом и протекающие в условиях засушливого климата и легкоразмываемых грунтов. Самые мутные реки на Земле — Терек, Сулак, Кура, Амударья, Ганг, Хуанхэ. Средняя годовая мутность рек Терека, Амударьи и Хуанхэ в условиях естественного режима составляла, например, 1,7; 2,9 и 25,8 кг/м3 соответственно. В половодье мутность воды Хуанхэ достигала 250 кг/м3! В насто­ящее время мутность перечисленных рек стала заметно меньше. Для сравнения приведем данные о средней годовой мутности воды в Волге в ее низовьях: до зарегулирования реки она была равна около 60 г/м3, а после зарегулирования уменьшилась до 25—30 г/м3.

Наиболее важные характеристики наносов следующие: геометрическая крупность, выражающаяся через диаметр частиц наносов (D мм); гидравлическая крупность, т. е. скорость осаждения частиц наносов в неподвижной воде (w, мм/с, мм/мин); плотность частиц (н, кг/м3), равная для наиболее распространенных кварцевых песков 2650 кг/м3; плотность отложений (плотность грунта) (отл, кг/м3), зависящая от плотности частиц и пористости грунта согласно формуле (5.3) (плотность илистых отложений на дне рек обычно составляет в среднем 700—1000 кг/м3, песчаных 1500—1700, смешанных 1000—1500 кг/м3); концентрация (содержание) наносов в потоке, которую можно представить как в относительных величинах (отношение массы или объема наносов к массе или объему воды), так и в абсолютных величинах; в последнем случае используют понятие мутность воды (s, г/м3, кг/м3), которая вычисляется по формуле

s = m/V, (6.36)

где т — масса наносов в пробе воды; Vобъем пробы воды. Мутность определяют путем фильтрования отобранных с помощью батометров проб воды и взвешивания фильтров.

По геометрической крупности наносы делят на фракции (табл. 6.4). В реальных условиях и наносы, переносимые речным потоком, и донные отложения представляют собой смесь наносов различной крупности. Такие наносы и отложения классифицируют с учетом преобладающих фракций (илистый песок, песчанистый ил и т. д.).

Таблица 6.4. Классификация наносов по размеру частиц (мм)

Градация

Фракции

Глина

Ил

Пыль

Песок

Гравий

Галька

Валуны

Мелкие Средние Крупные

< 0,001

0,001-0,005

0,005-0,01

0,01-0,05

0,05-0,1

0,1-0,2

0,2-0,5

0,5-1

1-2

2-5

5-10

10-20

20-50

50-100

100-200

200-500

500-1000

Путем механического анализа в лаборатории определяют, как распределяются по фракциям наносы в любой данной пробе, взятой в реке. Среднюю крупность наносов Dср в такой смеси определяют по формуле

, (6.37)

где Di и i — средняя крупность наносов каждой фракции и ее доля по массе (%) во всей пробе; п — число фракций.

Гидравлическая крупность наносов зависит от их геометрической крупности по-разному для мелких и крупных частиц.

Наносы крупнее 1,5 мм осаждаются в неподвижной воде с повышенными скоростями по извилистым, винтообразным траекториям (такой режим падения частиц назван турбулентным); для этого случая связь гидравлической и геометрической крупности выражается формулой

, (6.38)

где н и — плотность наносов и воды. Наносы мельче 0,15 мм осаждаются в неподвижной воде медленно и практически по прямой линии (такой режим падения частиц назвали ламинарным), в этом случае связь w и D будет иная:

, (6.39)

где v — кинематический коэффициент вязкости, зависящий от температуры воды (см. разд. 1.3.4). В диапазоне крупности наносов 0,15—1,5 мм режим осаждения частиц переходный, и связь между w и D описывается более сложными формулами.

Таким образом, для относительно крупных наносов гидравлическая крупность растет пропорционально корню квадратному из их геометрической крупности, а для мелких наносов гидравлическая крупность увеличивается пропорционально квадрату диаметра частиц наносов и уменьшается с возрастанием вязкости воды при уменьшении ее температуры.

Ниже приведена гидравлическая крупность частиц при температуре 15 °С (по А.В. Караушеву):

Диаметр

частиц, мм 1,0 0,5 0,2 0,1 0,05 0,01 0,005 0,001

Гидравлическая

крупность, мм/с 100 60 21 8 2 0,08 0,03 0,0008

По характеру перемещения в реках наносы разделяют на два основных типа — взвешенные и влекомые. Промежуточным типом являются сальтирующие наносы, движущиеся скачкообразно в придонном слое; наносы этой промежуточной группы условно объединяют с влекомыми.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]