- •Гидрология полный курс для экологов
- •Введение
- •Вода в природе и жизни человека
- •Понятие о гидросфере
- •Границы гидросферы
- •Образование гидросферы
- •Водные объекты
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод в народном хозяйстве и практическое значение гидрологии
- •Бассейновому органу и
- •Администрации территории — субъекту Российской Федерации.
- •1) Поверхностные водные объекты — водотоки (реки, ручьи, каналы) и водоемы (озера, водохранилища, болота, пруды), ледники и снежники;
- •2) Внутренние морские воды (расположены в сторону берега от границы территориальных вод);
- •3) Территориальные моря России (прибрежные воды шириной 12 морских миль).
- •Краткие сведения из истории гидрологии
- •Глава 1
- •1. Химические и физические свойства природных вод
- •1.1. Вода как химическое соединение, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды
- •1.3.1 Агрегатные состояния воды и фазовые переходы
- •1.3.2. Плотность воды
- •1.3.3. Тепловые свойства воды
- •1.3.4. Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •2.2. Водный баланс
- •2.3. Баланс содержащихся в воде веществ
- •2.4. Тепловой баланс
- •2.5. Основные закономерности движения природных вод
- •2.5.1. Классификация видов движения воды
- •2.5.2. Расход, энергия, работа и мощность водных потоков
- •2.5.3. Силы, действующие в водных объектах
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •3.1. Вода на земном шаре
- •3.2. Современные и ожидаемые изменения климата и гидросферы земли
- •3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •3.4. Круговорот воды на земном шаре
- •3.5. Круговорот содержащихся в воде веществ
- •3.6. Влияние гидрологических процессов на природные условия
- •3.7. Водные ресурсы земного шара, частей света и россии
- •Глава 4 гидрология ледников
- •4.1. Происхождение ледников и их распространение на земном шаре
- •4.2. Типы ледников
- •4.3. Образование и строение ледников
- •4.4. Питание и абляция ледников, баланс льда и воды в ледниках
- •4.5. Режим и движение ледников
- •4.6. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •5.1. Происхождение подземных вод и их распространение на земном шаре
- •5.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •5.2.1. Физические свойства грунтов
- •5.2.2. Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •5.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •5.3.1. Классификации подземных вод
- •5.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •5.3.3. Воды зоны насыщения. Грунтовые воды
- •5.3.4. Артезианские и глубинные воды
- •5.3.5. Другие типы подземных вод
- •5.4. Движение подземных вод
- •5.5. Водный баланс и режим подземных вод
- •5.5.1. Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •5.5.3. Режим грунтовых вод
- •5.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •5.7. Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •6.1. Реки и их распространение на земном шаре
- •6.2. Типы рек
- •6.3. Морфология и морфометрия реки и ее бассейна
- •6.3.1. Водосбор и бассейн реки
- •6.3.2. Морфометрические характеристики бассейна реки
- •6.3.3. Физико-географические и геологические характеристики бассейна реки
- •6.3.4. Река и речная сеть
- •6.3.5. Долина и русло реки
- •6.3.6. Продольный профиль реки
- •6.4. Питание рек
- •6.4.1. Виды питания рек
- •6.4.2. Классификация рек по видам питания
- •6.5. Расходование воды в бассейне реки
- •6.6. Водный баланс бассейна реки
- •6.6.1. Уравнение водного баланса бассейна реки
- •6.6.2. Структура водного баланса бассейна реки'
- •6.7. Водный режим рек
- •6.7.1. Виды колебаний водности рек
- •6.7.2. Фазы водного режима рек. Половодье, паводки, межень
- •6.7.3. Расчленение гидрографа по видам питания
- •6.7.4. Классификация рек по водному режиму
- •6.8. Речной сток
- •6.8.1. Составляющие речного стока
- •6.8.2. Факторы и количественные характеристики стока воды
- •6.8.3. Пространственное распределение стока воды на территории снг
- •6.9. Движение воды в реках
- •6.9.1. Распределение скоростей течения в речном потоки
- •6.9.2. Динамика речного потока
- •6.9.3. Закономерности трансформации паводков
- •6.10. Движение речных наносов
- •6.10.1. Происхождение, характеристики и классификация речных наносов
- •6.10.2. Движение влекомых наносов
- •6.10.3. Движение взвешенных наносов
- •6.10.4. Сток наносов
- •6.11. Русловые процессы
- •6.11.1. Физические причины и типизация русловых процессов
- •6.11.2. Микроформы речного русла и их изменения
- •6.11.3. Мезоформы речного русла и их изменения
- •6.11.4. Макроформы речного русла и их изменения
- •6.11.5. Деформации продольного профиля русла
- •6.11.6. Устойчивость речного русла
- •6.12. Термический и ледовый режим рек
- •6.12.1. Тепловой баланс участка реки
- •6.12.2. Термический режим рек
- •6.12.3. Ледовые явления
- •6.13. Основные черты гидрохимического и гидробиологического режима рек
- •6.13.1. Гидрохимический режим рек
- •6.13.2. Гидробиологические особенности рек
- •6.14. Устья рек
- •6.14.1. Факторы формирования, классификация и районирование устьев рек
- •6.14.2. Особенности гидрологического режима устьевого участка реки
- •6.14.3. Особенности гидрологического режима устьевого взморья
- •6.15. Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •6.15.1. Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •6.15.2. Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •6.15.3. Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •7.3. Морфология и морфометрия озер
- •7.4. Водный баланс озер
- •7.4.1. Уравнение водного баланса озера
- •7.4.2. Структура водного баланса озера
- •7.4.3. Водообмен в озере
- •7.5. Колебания уровня воды в озерах
- •7.7. Термический и ледовый режим озер
- •7.7.1. Тепловой баланс озер
- •7.7.2. Термическая классификация озер
- •7.7.3. Термический режим озер в условиях умеренного климата
- •7.7.4. Ледовые явления на озерах
- •7.8. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •7.8.1. Гидрохимические характеристики озер
- •7.8.2. Гидробиологические характеристики озер
- •7.8.3. Наносы и донные отложения в озерах
- •7.9. Водные массы озер
- •7.10. Изменения гидрологического режима каспийского и аральского морей
- •7.10.1. Проблемы, связанные с судьбой Каспийского и Аральского морей
- •7.10.2. Каспийское море
- •7.10.3. Аральское море
- •7.11. Влияние озер на речной сток. Хозяйственное использование озер
3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
Энергетической основой движения вод на Земле служат в первую очередь солнечная радиация и тепловые процессы, а во вторую — сила тяжести. Поэтому прежде чем проанализировать закономерности круговорота воды на земном шаре, рассмотрим особенности круговорота теплоты на Земле и роль в нем гидросферы.
Единственным внешним источником поступления теплоты на Землю служит Солнце — излучаемая им коротковолновая радиация. Современная средняя величина солнечной постоянной принимается равной 1367 Вт/м2. Учитывая шарообразность Земли, можно получить, что на верхнюю границу атмосферы поступает 1/4 часть указанной величины, т.е. 341,8 Вт/м2. С учетом площади поверхности Земли (510 млн км2) получим, что величина приходящей к планете коротковолновой солнечной радиации составляет 341,8 Вт/м25101012 м = 1,7431017 Вт или за «средний» год (365,25 сут = 31,56106 с) 5,501024 Дж.
Тепловой баланс атмосферы и земной поверхности очень сложен (С.П. Хромов, М.А. Петросянц, 2001). Для приближенной оценки теплового баланса Земли воспользуемся схемой, предложенной М.И. Будыко (1980). Эта схема относительно проста, но вполне достаточна, чтобы уяснить роль гидросферы в тепловом балансе Земли.
Обычно принимают, что планетарное альбедо Земли равно 30%. Это означает, что 30% коротковолновой солнечной радиации отражается Землей и уходит обратно в мировое пространство. Остальная часть солнечной радиации (70%, или 239,3 Вт/м2, а всего для планеты 12,201017 Вт, т.е. 3,851024 Дж в год) поглощается атмосферой и земной поверхностью.
Земля в течение длительного времени сохраняет свое тепловое равновесие; это означает, что в мировое пространство должно уходить то же количество теплоты, что и поглощается Землей (239,3 Вт/м2), но уже в виде длинноволнового излучения.
Поглощаемая Землей солнечная радиация (239,3 Вт/м2) расходуется, по оценкам М.И. Будыко, следующим образом: 66 % поглощается земной поверхностью, а остальные 34% — атмосферой.
Радиационный баланс земной поверхности (R) равен поглощенной этой поверхностью радиации за вычетом эффективного излучения (I). На долю R и I приходится соответственно около 105 и 53 Вт/м2, или 44 и 22% поглощенной всей Землей солнечной радиации.
Большая часть радиационного баланса земной поверхности (84%) тратится на испарение воды. Это количество теплоты (около 88 Вт/м2) составляет 37% всей поглощенной Землей солнечной радиации.
Затраты такого большого количества теплоты на испарение воды, безусловно, оказывают регулирующее влияние на тепловые процессы на Земле, и в этом проявляется важнейшая роль гидросферы в формировании климата планеты. Отметим также, что такие большие затраты теплоты на испарение обязаны одному из уникальных свойств самой воды — аномально большой удельной теплоте испарения (см. гл. 1). Испарение воды — это основа круговорота воды на Земле, о котором речь пойдет в разд. 3.4.
Оставшаяся часть энергии радиационного баланса (16% от R или 7% от всей поглощенной планетой солнечной радиации) расходуется на турбулентный теплообмен с атмосферой.
Важно отметить, что огромное количество теплоты, затраченной на испарение воды, полностью возвращается в атмосферу при конденсации водяного пара. Эта «возвращаемая» теплота обогревает атмосферу и становится причиной ее активности, особенно в тропиках. Атмосфера, следовательно, получает теплоту из трех источников: поглощенной коротковолновой радиации (34% всей солнечной радиации, перехваченной Землей), прихода теплоты в результате конденсации водяного пара (37%) и турбулентного потока теплоты от земной поверхности (7%) (всего 78%). Вместе с эффективным излучением земной поверхности (22%) это дает 100%, т.е. сумму длинноволнового излучения всей Земли в мировое пространство, в точности равное поглощенной планетой коротковолновой солнечной радиации.
Отношение эффективного излучения ко всему уходящему в мировое пространство длинноволновому излучению, равное 0,22, значительно меньше отношения поглощенной земной поверхностью радиации ко всей приходящей к верхней границе атмосферы коротковолновой солнечной радиации, равного 0,66. Это, как указывает М.И. Будыко (1980), и характеризует влияние парникового эффекта на тепловой баланс Земли. Парниковый эффект создают содержащиеся в атмосфере водяной пар, СО2 и другие газы. По некоторым оценкам (Экологический энциклопедический словарь, 1999), энергетический вклад СО2 в парниковый эффект составляет около 50 Вт/м2. Увеличение концентрации СО2 в XX в. повысило, по данным Б. Болина (2003), антропогенное энергетическое воздействие СО2 на парниковый эффект на 2,5 Вт/м2. Это относительно небольшое энергетическое влияние СО2 на приземную часть атмосферы оказалось достаточным, чтобы повысить температуру на 0,6 °С (см. разд. 3.2).
Важно подчеркнуть различия в тепловом балансе поверхности суши и Мирового океана. Установлено, что на суше, на испарение воды затрачивается около 54% энергии радиационного баланса, а на поверхности океана — уже более 90%.
Океан, имея температуру поверхностного слоя в среднем более высокую, чем атмосфера (приблизительно на 3 °С), играет важнейшую роль в глобальном теплообмене и обогревает атмосферу. По расчетам В.Н. Степанова (1983), в океане (в основном в его поверхностном слое) содержится 31,81027 Дж теплоты, что в 21 раз больше, чем в атмосфере.
Помимо отмеченного значения гидросферы в тепловом балансе Земли, необходимо обратить внимание на очень важную роль, которую она играет в перераспределении теплоты на земной поверхности.
В целом для поверхности Земли радиационный баланс Rпов и затраты теплоты на испарение и теплообмен с атмосферой исп + атм полностью балансируются, но на различных широтах это уже не наблюдается. В экваториальной части планеты Rпов > исп + атм, в приполярных районах соотношение обратное- (рис. 3.2, а). Чтобы избыток теплоты в низких и дефицит теплоты в высоких широтах в целом для Земли балансировались, необходимо существование постоянно действующего механизма передачи теплоты из экваториальной зоны к полюсам. Осуществляют этот меридиональный перенос теплоты в основном океанские течения. Физической причиной течений служит неоднородность распределения плотности воды, а она, в первую очередь,— различиями в температуре разных частей океана. Более подробно об этом будет сказано в гл. 10.
Следует добавить, что в результате неравномерного распределения теплоты на земном шаре складывается неравномерное распределение атмосферного давления, температуры воздуха и испаряемости, а также атмосферных осадков (рис. 3.2, б, в).
Заметим, что испаряемость (потенциально возможное, т.е. не лимитируемое запасами воды испарение в данном месте при существующих атмосферных условиях) и температура в целом повторяют кривую распределения по широте радиационного баланса, от которой они зависят. Обращает на себя внимание и такой факт. В условиях арктического, субарктического, антарктического и субантарктического, а также частично умеренного и экваториального климата осадки х превышают теоретически возможное испарение (испаряемость zo); здесь наблюдается избыток влаги и расположены области с избыточным увлажнением («индекс сухости» zo/x<0,45, по М.И. Будыко) — арктические пустыни, тундра, лесотундра, альпийские луга и занятые лесами области с достаточным увлажнением (zo/x=0,45÷1,00). В условиях субтропического, тропического, субэкваториального и частично умеренного и экваториального климата отмечаются, наоборот, превышение испаряемости над осадками и дефицит влаги; здесь расположены области с недостаточным увлажнением (zo/x=1,00÷3,00) — лесостепь, ксерофитная субтропическая растительность, а также сухие области полупустынь и пустынь (zo/x>3,0). Условия увлажнения, как будет показано далее, играют важнейшую роль в формировании водного баланса и гидрологического режима речных бассейнов, озер и морей.
Рис. 3.2. Распределение на земном шаре:
а — радиационного баланса поверхности Земли Rпов (I) и суммы тепловых затрат на испарение и передачу теплоты атмосфере исп + атм (2); б— испаряемости z0 (3); осадков х (4); в — температуры воздуха T за январь (5) и июль (6); типизация климатов Земли по Б.П. Алисову: Аркт — арктический, Ант — антарктический, Саркт — субарктический, Сант — субантарктический, Ум — умеренный, Стр — субтропический, Тр — тропический, Сэкв — субэкваториальный, Экв — экваториальный
