- •Гидрология полный курс для экологов
- •Введение
- •Вода в природе и жизни человека
- •Понятие о гидросфере
- •Границы гидросферы
- •Образование гидросферы
- •Водные объекты
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод в народном хозяйстве и практическое значение гидрологии
- •Бассейновому органу и
- •Администрации территории — субъекту Российской Федерации.
- •1) Поверхностные водные объекты — водотоки (реки, ручьи, каналы) и водоемы (озера, водохранилища, болота, пруды), ледники и снежники;
- •2) Внутренние морские воды (расположены в сторону берега от границы территориальных вод);
- •3) Территориальные моря России (прибрежные воды шириной 12 морских миль).
- •Краткие сведения из истории гидрологии
- •Глава 1
- •1. Химические и физические свойства природных вод
- •1.1. Вода как химическое соединение, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды
- •1.3.1 Агрегатные состояния воды и фазовые переходы
- •1.3.2. Плотность воды
- •1.3.3. Тепловые свойства воды
- •1.3.4. Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •2.2. Водный баланс
- •2.3. Баланс содержащихся в воде веществ
- •2.4. Тепловой баланс
- •2.5. Основные закономерности движения природных вод
- •2.5.1. Классификация видов движения воды
- •2.5.2. Расход, энергия, работа и мощность водных потоков
- •2.5.3. Силы, действующие в водных объектах
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •3.1. Вода на земном шаре
- •3.2. Современные и ожидаемые изменения климата и гидросферы земли
- •3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •3.4. Круговорот воды на земном шаре
- •3.5. Круговорот содержащихся в воде веществ
- •3.6. Влияние гидрологических процессов на природные условия
- •3.7. Водные ресурсы земного шара, частей света и россии
- •Глава 4 гидрология ледников
- •4.1. Происхождение ледников и их распространение на земном шаре
- •4.2. Типы ледников
- •4.3. Образование и строение ледников
- •4.4. Питание и абляция ледников, баланс льда и воды в ледниках
- •4.5. Режим и движение ледников
- •4.6. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •5.1. Происхождение подземных вод и их распространение на земном шаре
- •5.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •5.2.1. Физические свойства грунтов
- •5.2.2. Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •5.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •5.3.1. Классификации подземных вод
- •5.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •5.3.3. Воды зоны насыщения. Грунтовые воды
- •5.3.4. Артезианские и глубинные воды
- •5.3.5. Другие типы подземных вод
- •5.4. Движение подземных вод
- •5.5. Водный баланс и режим подземных вод
- •5.5.1. Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •5.5.3. Режим грунтовых вод
- •5.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •5.7. Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •6.1. Реки и их распространение на земном шаре
- •6.2. Типы рек
- •6.3. Морфология и морфометрия реки и ее бассейна
- •6.3.1. Водосбор и бассейн реки
- •6.3.2. Морфометрические характеристики бассейна реки
- •6.3.3. Физико-географические и геологические характеристики бассейна реки
- •6.3.4. Река и речная сеть
- •6.3.5. Долина и русло реки
- •6.3.6. Продольный профиль реки
- •6.4. Питание рек
- •6.4.1. Виды питания рек
- •6.4.2. Классификация рек по видам питания
- •6.5. Расходование воды в бассейне реки
- •6.6. Водный баланс бассейна реки
- •6.6.1. Уравнение водного баланса бассейна реки
- •6.6.2. Структура водного баланса бассейна реки'
- •6.7. Водный режим рек
- •6.7.1. Виды колебаний водности рек
- •6.7.2. Фазы водного режима рек. Половодье, паводки, межень
- •6.7.3. Расчленение гидрографа по видам питания
- •6.7.4. Классификация рек по водному режиму
- •6.8. Речной сток
- •6.8.1. Составляющие речного стока
- •6.8.2. Факторы и количественные характеристики стока воды
- •6.8.3. Пространственное распределение стока воды на территории снг
- •6.9. Движение воды в реках
- •6.9.1. Распределение скоростей течения в речном потоки
- •6.9.2. Динамика речного потока
- •6.9.3. Закономерности трансформации паводков
- •6.10. Движение речных наносов
- •6.10.1. Происхождение, характеристики и классификация речных наносов
- •6.10.2. Движение влекомых наносов
- •6.10.3. Движение взвешенных наносов
- •6.10.4. Сток наносов
- •6.11. Русловые процессы
- •6.11.1. Физические причины и типизация русловых процессов
- •6.11.2. Микроформы речного русла и их изменения
- •6.11.3. Мезоформы речного русла и их изменения
- •6.11.4. Макроформы речного русла и их изменения
- •6.11.5. Деформации продольного профиля русла
- •6.11.6. Устойчивость речного русла
- •6.12. Термический и ледовый режим рек
- •6.12.1. Тепловой баланс участка реки
- •6.12.2. Термический режим рек
- •6.12.3. Ледовые явления
- •6.13. Основные черты гидрохимического и гидробиологического режима рек
- •6.13.1. Гидрохимический режим рек
- •6.13.2. Гидробиологические особенности рек
- •6.14. Устья рек
- •6.14.1. Факторы формирования, классификация и районирование устьев рек
- •6.14.2. Особенности гидрологического режима устьевого участка реки
- •6.14.3. Особенности гидрологического режима устьевого взморья
- •6.15. Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •6.15.1. Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •6.15.2. Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •6.15.3. Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •7.3. Морфология и морфометрия озер
- •7.4. Водный баланс озер
- •7.4.1. Уравнение водного баланса озера
- •7.4.2. Структура водного баланса озера
- •7.4.3. Водообмен в озере
- •7.5. Колебания уровня воды в озерах
- •7.7. Термический и ледовый режим озер
- •7.7.1. Тепловой баланс озер
- •7.7.2. Термическая классификация озер
- •7.7.3. Термический режим озер в условиях умеренного климата
- •7.7.4. Ледовые явления на озерах
- •7.8. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •7.8.1. Гидрохимические характеристики озер
- •7.8.2. Гидробиологические характеристики озер
- •7.8.3. Наносы и донные отложения в озерах
- •7.9. Водные массы озер
- •7.10. Изменения гидрологического режима каспийского и аральского морей
- •7.10.1. Проблемы, связанные с судьбой Каспийского и Аральского морей
- •7.10.2. Каспийское море
- •7.10.3. Аральское море
- •7.11. Влияние озер на речной сток. Хозяйственное использование озер
3.2. Современные и ожидаемые изменения климата и гидросферы земли
В настоящее время человечество становится свидетелем глобальных изменений климата Земли и сопутствующих изменений состояния гидросферы. Эти изменения из области предположений перешли уже в категорию доказанных фактов: происходит общее потепление климата, тают многие ледники, повышается уровень Мирового океана. Идут лишь споры о том, что стало основной причиной этих глобальных изменений климата — астрономические процессы (изменение солнечной активности, положения полюсов Земли и т.д.), естественные периодические колебания системы Мировой океан — ледники, антропогенное увеличение содержания так называемых «парниковых газов» в атмосфере и усиление парникового эффекта.
Гипотеза антропогенного изменения климата, в основу которой положен учет выбросов в атмосферу парниковых газов и прежде всего СО2, наиболее полно и последовательно отражена в Третьем докладе, подготовленном Межправительственной группой экспертов по изменению климата (МГЭИК) (IPCC-2001)3. Этот доклад содержит как самые последние оценки происшедших в XX в. изменения климата и гидросферы Земли, так и многовариантные прогнозы глобальных изменений в XXI в.
МГЭИК была учреждена в 1988 г. Программой ООН по окружающей среде и Всемирной метеорологической организацией (ВМО), ее оценки носят официальный характер и заслуживают более подробного рассмотрения. Весьма важно, что эти оценки в целом нашли подтверждение в материалах Всемирной конференции по изменению климата, которая прошла в Москве 29 сентября —3 октября 2003г.4
Глобальные изменения климата и гидросферы в XX в. По оценкам МЭИК, средняя концентрация диоксида углерода (углекислого газа в атмосфере с 1750 по 2000 гг. увеличилась с 0,280 до 0,368‰ т. е. на 31%. Основная причина этого — увеличение выбрасов газа в атмосферу в результате сжигания органического топлива. Возросло содержание в атмосфере и других парниковых газов — метана СН4, закиси азота NO2, озона О3 и др. Парниковые газы, а также водяной пар поглощают длинноволновое (инфракрасное) излучение, испускаемое поверхностью Земли, что ведет к нагреванию нижних слоев атмосферы. Такое явление получило название «парниковый эффект». Он был всегда присущ атмосфере Земли, но последнее столетие усилился.
Средняя глобальная температура поверхности Земли возросла в XX в. на 0,6 °С. При этом температура над поверхностью суши увеличилась сильнее, чем над поверхностью океана. Наибольшее потепление отмечалось в 1910—1945 гг. и с 1979 по 2000 гг., а в 1946— 1975 гг. наблюдалось некоторое похолодание. Потепление в Северном полушарии в XX в. было наибольшим за последние 1000 лет. Последние 10 лет XX в. были самыми теплыми, а в 1998 г. отмечалась самая высокая средняя годовая температура.
Количество атмосферных осадков в высоких и средних широтах Северного полушария увеличилось в XX в. на 5—10%. Возросли осадки также и в тропиках. Однако в Северной и Западной Африке и некоторых районах Средиземноморья осадки несколько уменьшились. В высоких и средних широтах Северного полушария возросла повторяемость выпадения обильных осадков и катастрофических дождевых паводков. Вместе с тем увеличились частота и суровость засух в некоторых частях Азии и Африки. В течение последних 20— 30 лет XX в. явления Эль-Ниньо стали более частыми, продолжительными и интенсивными, чем в предшествующие десятилетия.
Происшедшие изменения климата отразились и на состоянии гидросферы. Глобальное потепление в XX в. привело к повсеместному отступанию горных ледников; сокращению площади снежного покрова (на 10% после 1960 г., когда начались специальные наблюдения); подтаиванию и деградации многолетней мерзлоты в некоторых полярных, субполярных и горных районах; уменьшению толщины льда в арктических морях; сокращению приблизительно на 2 недели длительности ледостава на реках в высоких и средних широтах Северного полушария.
Изменения атмосферных осадков вызвали аналогичные изменения речного стока. Он, в частности, несколько возрос в тропиках и в средних и высоких широтах Северного полушария.
Повышение уровня Мирового океана в течение XX в. оценено в докладе МГЭИК величиной 10—20 см (1—2 мм/год); при этом в разных районах величина подъема уровня океана оказалась разной. Осредненный график повышения уровня океана в XX в. представлен на рис. 3.1, а.
Повышение уровня Мирового океана в XX в. в среднем на 15 см соответствует увеличению объема вод в океане на 54,2 тыс. км3, или всего на 0,004% полного его объема. Средняя интенсивность увеличения объема вод Мирового океана за 100 лет составила 542 км3/год.
Происшедшие изменения климата и гидросферы оказали воздействие и на другие компоненты природной среды и условия жизни людей. В Северном полушарии в течение последних 40 лет период роста растений увеличивался примерно на 1—4 дня за каждые 10 лет. Границы произрастания растений и обитания животных (насекомых, птиц и рыб) сдвинулись в Северном полушарии в сторону полюса и вверх по склонам гор. Ущербы, обусловленные климатическими и гидрологическими явлениями, в последние 40 лет увеличились.
По данным Ю.Л. Воробьева, В.А. Акимова, Ю.И. Соколова (2003)5, повторяемость катастрофических наводнений на земном шаре в последние десятилетия заметно увеличилась; возрос и ущерб, приносимый наводнениями населению и экономике. Специалисты объясняют это нерациональным ведением хозяйства и изменением климата. Площадь территорий на планете, подверженных наводнениям, превышает в настоящее время 3 млн км2; проживает здесь около 1 млрд человек. От наводнений каждый год гибнут тысячи людей, ежегодные убытки составляют десятки миллиардов долларов. Только в одном 2002 г. в мире произошло 261 значительное наводнение, причем 9 из них (в том числе наводнение на юге России) отнесены к числу экстремальных, которые случаются раз в столетие. В результате наводнений в 2002 г., по оценкам Всемирной метеорологической организации, на земном шаре пострадало свыше 17 млн жителей из 80 стран, погибло более 3 тыс. человек, ущерб от бедствий составил более 30 млрд долларов. В России площадь территории, подверженной опасности только паводочных наводнений, составляет 400 тыс. км2; ежегодно затопляется около 50 тыс. км2. Средний ежегодный ущерб от наводнений оценивается почти в 42 млрд руб.
Рис. 3.1. Изменения уровня Мирового океана: по наблюдениям, согласно Первому докладу МГЭИК (1990) (а), и по прогнозу, по данным Третьего доклада МГЭИК (2001) (б). Ожидаемый рост уровня: 1 — максимальный; 2— средний; 3 — минимальный
Глобальные климатические модели. В последнее время для оценки происходящих, а главное, ожидаемых изменений климата и гидросферы Земли стали широко применять глобальные климатические модели (ГКМ). Современные ГКМ включают в качестве компонентов интерактивные (взаимодействующие между собой) математические модели атмосферы, океана, верхних слоев суши, криосферы (ледниковых систем), биосферы. ГКМ основаны на физических законах и представлены сложной системой дифференциальных уравнений в частных производных.
Проверка ГКМ с использованием данных наблюдений в XX в., проведенная МГЭИК, показала в целом хорошее совпадение фактических и рассчитанных величин изменений климата при известных изменениях концентрации СО2 в атмосфере. Результаты такой проверки позволяют сделать по крайней мере четыре важных вывода: 1) ГКМ более или менее адекватно отражают происходящие изменения климата; 2) подтверждается ведущая роль содержания СО2 и парникового эффекта в изменениях климата; 3) подтверждается антропогенная гипотеза изменений климата; 4) ГКМ могут быть использованы для многовариантных и приближенных расчетов возможных изменений климата в XXI в.
Прогнозы глобальных изменений климата и гидросферы в XXI в. Прогностические оценки в докладе МГЭИК сделаны, исходя из различных сценариев изменения выбросов парниковых газов в атмосферу, в свою очередь зависящих от социально-экономических и технологических характеристик различных схем дальнейшего развития человечества. По этой причине прогностические оценки обладают существенной неопределенностью и имеют многовариантный характер.
По разным сценариям МГЭИК, концентрация СО2 в атмосфере к 2100 г. может возрасти до 0,540—0,970‰ по сравнению с 0,368‰ в 2000 г. Все остальные прогнозы, основанные на сценариях изменения содержания СО2, также дают большие разбросы ожидаемых величин.
Согласно прогностическим оценкам МГЭИК, средняя температура поверхности Земли повысится с 1990 по 2100 гг. на 1,4—5,8 °С. Это приблизительно в 2—10 раз больше величины потепления, наблюдавшегося в XX в. В периоды с 1990 по 2025 гг. и с 1990 по 2050 гг. прогнозируется возрастание температуры соответственно на 0,4—1,1 и 0,8—2,6 °С. Темпы потепления климата в XXI в. могут оказаться самыми высокими за последние 10 000 лет.
В XXI в. среднее годовое количество атмосферных осадков, по прогнозам МГЭИК, увеличится в высоких широтах Северного полушария (как в летнее, так и в зимнее время); в средних широтах Северного полушария, тропической Африке и в Антарктике в зимнее время; в южной и восточной частях Азии в летнее время.
В Австралии, Центральной Америке и южной части Африки дожди в зимнее время должны уменьшиться.
С точки зрения гидрологии, очень важны оценки возможного изменения возобновляемых водных ресурсов — речного стока. В прогнозах МГЭИК отмечается, что в целом по земному шару прогностические оценки изменения речного стока совпадают с аналогичными оценками изменения атмосферных осадков, хотя в некоторых районах рост осадков может компенсироваться увеличением испарения, вызванным ростом температуры. Более конкретные прогнозы изменения стока зависят от сценария увеличения содержания СО2 в атмосфере и роста температуры, поэтому все прогнозы изменения речного стока следует рассматривать как весьма приближенные.
Согласно прогнозам МГЭИК, к 2050 г. при условии экстремального увеличения содержания СО2 до 0,643‰ и роста глобальной температуры на 2,5 °С по сравнению с температурой в 1990 г. ожидается увеличение годового стока рек в высоких широтах Северного полушария (в частности, в Канаде и Сибири) и Юго-Восточной Азии; уменьшение годового стока рек в Центральной Азии, южной части Африки, северной части Южной Америки, Австралии, в южной и центральной Европе.
Что касается изменения стока конкретных рек, то соответствующие прогнозы весьма ненадежны и противоречивы. Однако большинство интерпретаторов выводов МГЭИК сходится во мнении, что в XXI в. заметно возрастет сток таких рек, как Юкон, Макензи, Обь, Енисей, Лена, Амазонка, Ганг и Брахмапутра. При реализации некоторых сценариев может увеличиться и сток Волги.
По оценкам И.А. Шикломанова и В.Ю. Георгиевского (2003), ожидаемое потепление в холодный период года в высоких широтах приведет на большей части России к повышению зимнего стока в результате увеличения частоты и интенсивности оттепелей.
Ледники, по прогнозам, будут в XXI в. постоянно отступать. Снежный покров на суше и площадь морских льдов в Северном полушарии будут продолжать сокращаться. Ледяной покров арктических островов и Гренландии, скорее всего, уменьшится. Ледяной покров в Антарктиде (в особенности в ее центральной части) будет, наоборот, увеличиваться в результате возрастания количества осадков.
В Северном полушарии продолжится сокращение площади и мощности многолетней («вечной») мерзлоты. По некоторым оценкам, южная граница многолетнего промерзания грунтов как в Евразии, так и в Северной Америке может сместиться к северу: в случае увеличения температуры на 2 и 4 °С — соответственно на 5 и 10° с. ш.
Уровень Мирового океана в результате увеличения осадков и речного стока, таяния ледников, а также теплового расширения морской воды, по прогнозам МГЭИК, может возрасти за 1990— 2025, 1990-2050 и 1990-2100 гг. соответственно на 3-14, 5-32 и 9—88 см (рис. 3.1, б). При этом темпы повышения среднего уровня океана будут возрастать (табл. 3.3).
В XXI в. прогнозируются увеличение изменчивости метеорологических и гидрологических явлений; увеличение в ряде районов интенсивности осадков; усиление засух и наводнений, связанных с явлением Эль-Ниньо; увеличение максимальных скоростей ветра и осадков при тропических циклонах и др.
В целом прогнозируемые на XXI в. изменения в гидросфере Земли могут оказать, по мнению МГЭИК, заметное отрицательное воздействие на население и природу в низинных прибрежных районах, дельтах и на островах (в результате затопления земель и размыва берегов). Например, по оценкам Нобуо Мимуры (2003), повышение уровня океана на 9, 50 и 88 см приведет к затоплению земель на площади, равной соответственно 0,45; 0,65 и 0,83% площади всей суши. Доля населения, на жизни которого скажется это повышение уровня океана к 2100г., составит соответственно 1,19; 1,84 и 2,34% всего населения планеты.
Кроме того, в XXI в. могут возрасти ущербы от паводочных наводнений на реках, оползней, лавин, селей, от эрозии земель в речных бассейнах.
Таблица 3.3. Средние оценки ожидаемого повышения уровня Мирового океана в XXI в.
(по материалам Межправительственной группы экспертов по изменению климата (2001))
-
Год
Повышение уровня по сравнению с уровнем
1990 г., см
Изменение уровня за период между указанными годами
см
мм/год
1990
2025
2050
2100
0
8,5
18,5
48,5
8,5
10
30
2,4
4,0
6,0
Примечание. Среднее повышение уровня Мирового океана в XX в., по оценкам МГЭИК, составило 15 см, что соответствует средней интенсивности подъема уровня 1,5 мм/год.
