- •Гидрология полный курс для экологов
- •Введение
- •Вода в природе и жизни человека
- •Понятие о гидросфере
- •Границы гидросферы
- •Образование гидросферы
- •Водные объекты
- •Гидрологический режим и гидрологические процессы
- •Науки о природных водах
- •Методы гидрологических исследований
- •Использование природных вод в народном хозяйстве и практическое значение гидрологии
- •Бассейновому органу и
- •Администрации территории — субъекту Российской Федерации.
- •1) Поверхностные водные объекты — водотоки (реки, ручьи, каналы) и водоемы (озера, водохранилища, болота, пруды), ледники и снежники;
- •2) Внутренние морские воды (расположены в сторону берега от границы территориальных вод);
- •3) Территориальные моря России (прибрежные воды шириной 12 морских миль).
- •Краткие сведения из истории гидрологии
- •Глава 1
- •1. Химические и физические свойства природных вод
- •1.1. Вода как химическое соединение, ее молекулярная структура и изотопный состав
- •1.2. Химические свойства воды. Вода как растворитель
- •1.3. Физические свойства воды
- •1.3.1 Агрегатные состояния воды и фазовые переходы
- •1.3.2. Плотность воды
- •1.3.3. Тепловые свойства воды
- •1.3.4. Некоторые другие физические свойства воды
- •Глава 2 физические основы гидрологических процессов
- •2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •2.2. Водный баланс
- •2.3. Баланс содержащихся в воде веществ
- •2.4. Тепловой баланс
- •2.5. Основные закономерности движения природных вод
- •2.5.1. Классификация видов движения воды
- •2.5.2. Расход, энергия, работа и мощность водных потоков
- •2.5.3. Силы, действующие в водных объектах
- •Глава 3 круговорот воды в природе и водные ресурсы земли
- •3.1. Вода на земном шаре
- •3.2. Современные и ожидаемые изменения климата и гидросферы земли
- •3.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •3.4. Круговорот воды на земном шаре
- •3.5. Круговорот содержащихся в воде веществ
- •3.6. Влияние гидрологических процессов на природные условия
- •3.7. Водные ресурсы земного шара, частей света и россии
- •Глава 4 гидрология ледников
- •4.1. Происхождение ледников и их распространение на земном шаре
- •4.2. Типы ледников
- •4.3. Образование и строение ледников
- •4.4. Питание и абляция ледников, баланс льда и воды в ледниках
- •4.5. Режим и движение ледников
- •4.6. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •Глава 5 гидрология подземных вод
- •5.1. Происхождение подземных вод и их распространение на земном шаре
- •5.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •5.2.1. Физические свойства грунтов
- •5.2.2. Виды воды в порах грунта
- •5.2.3. Водные свойства грунтов
- •5.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •5.3.1. Классификации подземных вод
- •5.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •5.3.3. Воды зоны насыщения. Грунтовые воды
- •5.3.4. Артезианские и глубинные воды
- •5.3.5. Другие типы подземных вод
- •5.4. Движение подземных вод
- •5.5. Водный баланс и режим подземных вод
- •5.5.1. Водный баланс подземных вод
- •5.5.2. Водный режим зоны аэрации
- •5.5.3. Режим грунтовых вод
- •5.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •5.7. Практическое значение и охрана подземных вод
- •Глава 6 гидрология рек
- •6.1. Реки и их распространение на земном шаре
- •6.2. Типы рек
- •6.3. Морфология и морфометрия реки и ее бассейна
- •6.3.1. Водосбор и бассейн реки
- •6.3.2. Морфометрические характеристики бассейна реки
- •6.3.3. Физико-географические и геологические характеристики бассейна реки
- •6.3.4. Река и речная сеть
- •6.3.5. Долина и русло реки
- •6.3.6. Продольный профиль реки
- •6.4. Питание рек
- •6.4.1. Виды питания рек
- •6.4.2. Классификация рек по видам питания
- •6.5. Расходование воды в бассейне реки
- •6.6. Водный баланс бассейна реки
- •6.6.1. Уравнение водного баланса бассейна реки
- •6.6.2. Структура водного баланса бассейна реки'
- •6.7. Водный режим рек
- •6.7.1. Виды колебаний водности рек
- •6.7.2. Фазы водного режима рек. Половодье, паводки, межень
- •6.7.3. Расчленение гидрографа по видам питания
- •6.7.4. Классификация рек по водному режиму
- •6.8. Речной сток
- •6.8.1. Составляющие речного стока
- •6.8.2. Факторы и количественные характеристики стока воды
- •6.8.3. Пространственное распределение стока воды на территории снг
- •6.9. Движение воды в реках
- •6.9.1. Распределение скоростей течения в речном потоки
- •6.9.2. Динамика речного потока
- •6.9.3. Закономерности трансформации паводков
- •6.10. Движение речных наносов
- •6.10.1. Происхождение, характеристики и классификация речных наносов
- •6.10.2. Движение влекомых наносов
- •6.10.3. Движение взвешенных наносов
- •6.10.4. Сток наносов
- •6.11. Русловые процессы
- •6.11.1. Физические причины и типизация русловых процессов
- •6.11.2. Микроформы речного русла и их изменения
- •6.11.3. Мезоформы речного русла и их изменения
- •6.11.4. Макроформы речного русла и их изменения
- •6.11.5. Деформации продольного профиля русла
- •6.11.6. Устойчивость речного русла
- •6.12. Термический и ледовый режим рек
- •6.12.1. Тепловой баланс участка реки
- •6.12.2. Термический режим рек
- •6.12.3. Ледовые явления
- •6.13. Основные черты гидрохимического и гидробиологического режима рек
- •6.13.1. Гидрохимический режим рек
- •6.13.2. Гидробиологические особенности рек
- •6.14. Устья рек
- •6.14.1. Факторы формирования, классификация и районирование устьев рек
- •6.14.2. Особенности гидрологического режима устьевого участка реки
- •6.14.3. Особенности гидрологического режима устьевого взморья
- •6.15. Практическое значение рек. Влияние хозяйственной деятельности на режим рек
- •6.15.1. Практическое значение рек и типизация хозяйственных мероприятий, влияющих на речной сток
- •6.15.2. Влияние на речной сток хозяйственной деятельности на поверхности речных бассейнов
- •6.15.3. Влияние на речной сток хозяйственной деятельности, связанной с непосредственным использованием речных вод
- •6.15.4. Гидролого-экологические последствия антропогенных изменений стока рек
- •Глава 7 гидрология озер
- •7.1. Озера и их распространение на земном шаре
- •7.3. Морфология и морфометрия озер
- •7.4. Водный баланс озер
- •7.4.1. Уравнение водного баланса озера
- •7.4.2. Структура водного баланса озера
- •7.4.3. Водообмен в озере
- •7.5. Колебания уровня воды в озерах
- •7.7. Термический и ледовый режим озер
- •7.7.1. Тепловой баланс озер
- •7.7.2. Термическая классификация озер
- •7.7.3. Термический режим озер в условиях умеренного климата
- •7.7.4. Ледовые явления на озерах
- •7.8. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •7.8.1. Гидрохимические характеристики озер
- •7.8.2. Гидробиологические характеристики озер
- •7.8.3. Наносы и донные отложения в озерах
- •7.9. Водные массы озер
- •7.10. Изменения гидрологического режима каспийского и аральского морей
- •7.10.1. Проблемы, связанные с судьбой Каспийского и Аральского морей
- •7.10.2. Каспийское море
- •7.10.3. Аральское море
- •7.11. Влияние озер на речной сток. Хозяйственное использование озер
2.5.2. Расход, энергия, работа и мощность водных потоков
Расход воды — это количество воды, протекающее через поперечное сечение потока в единицу времени.
Расход воды — одна из важнейших гидрологических и гидравлических характеристик, применяемых при исследовании различных водных объектов — рек, озер, морей, а также ледников, лавин (в последних случаях говорят о расходе льда, снега). Выражают расход воды обычно в объемных единицах (Q, м3/с). Если рассматривают расход массы вещества (воды, льда, снега), то используют единицы массы (R= Q, кг/с, где — плотность данного вещества).
Расход воды может быть представлен как произведение площади поперечного сечения потока (, м2) на среднюю скорость движения воды (v, м/с):
Q = v. (2.10)
Кинетическая энергия движущейся воды Екин выражается формулой
Eкин = тv2/2. (2.11)
За время ∆t масса воды m, переместившейся через данное поперечное сечение, равна Q∆t, поэтому для кинетической энергии водного потока получим выражение
Eкин = Qv2∆t/2. (2.12)
Потенциальная энергия массы воды Епот равна
Eпот = mgH, (2.13)
где H—высота центра тяжести объема воды над некоторой плоскостью отсчета, например уровнем моря. Выразив т через Q∆t, получим
Eпот = gQ∆tH. (2.14)
Вода, перемещаясь вниз на высоту АН, совершает работу А, равную:
A = gQ∆t∆H. (2.15)
Мощность такого водного потока (N=A/∆t) равна:
N=gQ∆H. (2.16)
А, как и Екин, Епот выражают в Дж, N— в Дж/с или Вт.
По формулам (2.12) — (2.16) можно оценить энергию, работу и мощность не только движущейся воды, но и перемещающегося льда и снега.
2.5.3. Силы, действующие в водных объектах
Строгая математическая интерпретация законов движения воды с учетом всех действующих физических сил возможна лишь на основе трехмерного гидродинамического анализа. Для понимания наиболее общих закономерностей движения природных вод достаточно рассмотреть более упрощенную задачу. Для этого выделим в водном объекте некоторый объем воды в виде параллелепипеда со сторонами ∆х (длина), В (ширина), h (высота) (рис. 2.3, а, б). При этом ось х направим через центр тяжести выделенного объема параллельно водной поверхности. Нижняя грань объема Sдно соприкасается с дном, верхняя Sпов — с воздухом; поэтому высота параллелепипеда является одновременно и глубиной потока. Задняя S1, передняя S2 и боковые — левая S3 и правая S4 грани отделяют выделенный объем от остальной части потока.
П
усть
выделенный объем воды массой m
движется,
не деформируясь, как единое целое в
направлении уклона водной поверхности
со средней скоростью v.
В этом случае на объем воды будут
действовать следующие объемные (массовые)
и поверхностные силы.
Рис. 2.3. Схема действующих в водном
потоке физических сил:
а — выделенный
объем воды, б— он
же, в разрезе,
в — он
же, в плане
Поверхностные силы, действующие на вертикальных гранях выделенного объема, подразделяются, в свою очередь, на нормальные, направленные перпендикулярно граням (это силы давления Р), и касательные, действующие вдоль граней (это силы трения Т). Различают силу трения у дна Tдно и силу трения, обусловленную действием ветра на водную поверхность Tветр (считается, что неподвижный воздух тормозящего действия на движущуюся воду практически не оказывает).
Для математического представления объемных (массовых), нормальных и касательных поверхностных сил используют соответственно следующие выражения: F= ma, F= Sp и F= S, где m — масса; а — ускорение; S— площадь боковой грани; р — давление на единицу площади; —удельное трение (касательное напряжение). Размерность р и - Н/м2. Как следует из рис. 2.3, все перечисленные силы, действующие на рассматриваемый объем воды, можно представить в следующем виде.
Сила тяжести, действующая вертикально вниз, равна Fg = mg, а ее продольная составляющая, действующая вдоль уклона водной поверхности, равна
Fg= mg sin = mgI, (2.17)
где — угол между горизонтальной плоскостью и поверхностью воды; sin = ∆H/∆x=I — уклон водной поверхности (величина безразмерная); ∆H – падение уровня вдоль участка ∆х.
Центробежная сила действует лишь в случае изгиба траекторий движущихся частиц воды и направлена перпендикулярно потоку в сторону от центра кривизны (такой случай показан на рис. 2.3, в). Эта сила равна Fц = maц, где ац — центробежное ускорение, равное v2/r (v — скорость течения воды, r—радиус изгиба потока), т.е.
Fц= mv2/r. (2.18)
Сила Кориолиса действует на любое движущееся тело и направлена перпендикулярно движению в Северном полушарии — вправо, в Южном — влево. Она равна Fк = так, где ак — ускорение Кориолиса, равное 2vsin ( — угловая скорость вращения Земли, равная 2/86 400 = 7,2710-5 с1, — географическая широта места), т.е.
FK = 2mv sin . (2.19)
Масса выделенного объема т может быть представлена во всех этих формулах как m = Sh = ∆xBh, где — плотность воды; S — площадь верхней или нижней граней, равная ∆хВ.
