
- •1. Предмет теории вероятностей. Достоверные, невозможные и случайные события. Виды случайных событий.
- •2. Классическое определение в-ти. Св-ва в-ти.
- •3. Основные формулы комбинаторики. Примеры непосредственного вычисления вероятностей
- •4. Относительная частота. Устойчивость относительной частоты
- •5. Теорема сложения вероятностей несовместных событий
- •6. Теорема умножения вероятностей.
- •7. Независимые события. Теорема умножения для независимых событий
- •8. Вероятность появления хотя бы одного события
- •9. Теорема сложения вероятностей совместных событий
- •10. Формула полной вер-ти.
- •11. Вероятность гипотез. Формула Байеса.
- •12. Повторение испытаний. Формула Бернулли. Приближенная формула Пуассона.
- •14.Случайные величины. Их виды и законы распределения. Мо дсв и его вероятностный смысл.
- •15. Свойства мо
- •16. Дисперсия и ско дсв. Св-ва дисперсии.
- •17. Биномиальное распределение. Распределение Пуассона.
- •18. Простейший поток событий
- •19. Закон больших чисел.
- •20. Функция распределения вероятностей и ее свойства.
- •21. Плотность распределения вероятностей нсв и ее свойства.
- •22. Математическое ожидание, дисперсия и ско непрерывных св.
- •23. Равномерное распределение. Распределение . Распределение Стьюдента.
- •24.Числовые хар-ки ср.Значения нескольких взаимно независимых одинаково распределенных св.
- •25. Нормальное распределение нсв. Вероятность попадания нормально распределенной св в заданный интервал.
- •26. Генеральная совокупность и выборка. Статистическое распределение. Эмпирическая функция распределения. Полигон и гистограмма.
- •27. Статистические оценки параметров распределения. Выборочная средняя как оценка математического ожидания теоретического распределения. Генеральная и выборочная дисперсия. Исправленная дисперсия.
- •28. Точечные оценки параметров распределения. Метод моментов.
- •29. Точечные оценки параметров распределения. Метод наибольшего правдоподобия.
- •30. Точность оценки, доверительная вероятность и доверительный интервал. Доверительный интервал для оценки математического ожидания нормального распределения при известном и неизвестном ско.
- •31. Методы расчета характеристик выборки.
- •32. Обработка результатов наблюдений. Метод наименьших квадратов. Линейная аппроксимация экспериментальных данных. Коэффициент корреляции и его свойства.
- •33. Зависимость между случайными величинами. Корреляционная зависимость и уравнение регрессии.
- •34. Статистическая гипотеза. Виды гипотез. Ошибки 1-го и 2-го рода. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия.
- •§ 1. Статистическая гипотеза. Нулевая и конкурирующая, простая и сложная гипотезы
- •§ 2. Ошибки первого и второго рода
- •§ 3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •35. Критическая область. Отыскание критических областей. Мощность критерия.
- •§ 4. Критическая область. Область принятия гипотезы. Критические точки
- •§ 5. Отыскание правосторонней критической области
- •§ 6. Отыскание левосторонней и двусторонней критических областей
- •§ 7. Дополнительные сведения о выборе критической области. Мощность критерия
- •36. Сравнение двух дисперсий нормальных генеральных совокупностей.
- •37. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности.
35. Критическая область. Отыскание критических областей. Мощность критерия.
§ 4. Критическая область. Область принятия гипотезы. Критические точки
После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, а другая - при которых она принимается.
Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.
Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают.
Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области -гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы -гипотезу принимают.
Поскольку критерий К -одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами и, следовательно, существуют точки, которые их разделяют.
Критическими точками (границами) kкр называют точки, отделяющие критическую область от области принятия гипотезы.
Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.
Правосторонней называют критическую область, определяемую неравенством К>kкр>где kкр -положительное число.
Левосторонней называют критическую область, определяемую неравенством К<kкр, где kкр-отрицательное число.
Односторонней называют правостороннюю или левостороннюю критическую область.
Двусторонней называют критическую область, определяемую неравенствами К<k1, K>k2, где k2>k1.
В частности, если критические точки симметричны относительно нуля, двусторонняя критическая область определяется неравенствами (в предположении, чтоkкр>0): K<-kкр, К>kкр, или равносильным неравенством |К|>kкр.
§ 5. Отыскание правосторонней критической области
Как найти критическую область? Обоснованный ответ на этот вопрос требует привлечения довольно сложной теории. Ограничимся ее элементами. Для определенности начнем с нахождения правосторонней критической области, которая определяется неравенством K>kкр, где kкр>0- Видим, что для отыскания правосторонней критической области достаточно найти критическую точку. Следовательно, возникает новый вопрос: как ее найти?
Для ее нахождения задаются достаточной малой вероятностью- уровнем значимости α. Затем ищут критическую точку kкp, исходя из требования, чтобы при условии справедливости нулевой гипотезы вероятность того, что критерий К примет значение, большее kкр, была равна принятому уровню значимости: P(K>kкр)=α.
Для каждого критерия имеются соответствующие таблицы, по которым и находят критическую точку, удовлетворяющую этому требованию.
Замечание 1. Когда критическая точка уже найдена, вычисляют по данным выборок наблюденное значение критерия и, если окажется, что Кнабл>kкр, то нулевую гипотезу отвергают; если же Кнабл<kкр, то нет оснований, чтобы отвергнуть нулевую гипотезу.
Пояснение. Почему правосторонняя критическая область была определена исходя из требования, чтобы при справедливости нулевой гипотезы выполнялось соотношение P(K>kкр)=α? (*)
Поскольку вероятность события К>kкр мала (α -малая вероятность), такое событие при справедливости нулевой гипотезы, в силу принципа практической невозможности маловероятных событий, в единичном испытании не должно наступить. Если все же оно произошло, т. е. наблюдаемое значение критерия оказалось больше kкр, то это можно объяснить тем, что нулевая гипотеза ложна и, следовательно, должна быть отвергнута. Таким образом, требование (*) определяет такие значения критерия, при которых нулевая гипотеза отвергается, а они и составляют правостороннюю критическую область.
Замечание 2. Наблюдаемое значение критерия может оказаться большим kкр не потому, что нулевая гипотеза ложна, а по другим причинам (малый объем выборки, недостатки методики эксперимента и др.). В этом случае, отвергнув правильную нулевую гипотезу, совершают ошибку первого рода. Вероятность этой ошибки равна уровню значимости α. Итак, пользуясь требованием (*), мы с вероятностью α рискуем совершить ошибку первого рода.
Заметим кстати, что в книгах по контролю качества продукции вероятность признать негодной партию годных изделий называют «риском производителя», а вероятность принять негодную партию - «риском потребителя».
Замечание 3. Пусть нулевая гипотеза принята; ошибочно думать, что тем самым она доказана. Действительно, известно, что один пример, подтверждающий справедливость некоторого общего утверждения, еще не доказывает его. Поэтому более правильно говорить «данные наблюдений согласуются с кулевой гипотезой и, следовательно, не дают оснований ее отвергнуть».
На практике для большей уверенности принятия гипотезы ее проверяют другими способами или повторяют эксперимент, увеличив объем выборки.
Отвергают гипотезу более категорично, чем принимают. Действительно, известно, что достаточно привести один пример, противоречащий некоторому общему утверждению, чтобы это утверждение отвергнуть. Если оказалось, что наблюдаемое значение критерия принадлежит критической области, то этот факт и служит примером, противоречащим нулевой гипотезе, что позволяет ее отклонить.