
- •1. Предмет теории вероятностей. Достоверные, невозможные и случайные события. Виды случайных событий.
- •2. Классическое определение в-ти. Св-ва в-ти.
- •3. Основные формулы комбинаторики. Примеры непосредственного вычисления вероятностей
- •4. Относительная частота. Устойчивость относительной частоты
- •5. Теорема сложения вероятностей несовместных событий
- •6. Теорема умножения вероятностей.
- •7. Независимые события. Теорема умножения для независимых событий
- •8. Вероятность появления хотя бы одного события
- •9. Теорема сложения вероятностей совместных событий
- •10. Формула полной вер-ти.
- •11. Вероятность гипотез. Формула Байеса.
- •12. Повторение испытаний. Формула Бернулли. Приближенная формула Пуассона.
- •14.Случайные величины. Их виды и законы распределения. Мо дсв и его вероятностный смысл.
- •15. Свойства мо
- •16. Дисперсия и ско дсв. Св-ва дисперсии.
- •17. Биномиальное распределение. Распределение Пуассона.
- •18. Простейший поток событий
- •19. Закон больших чисел.
- •20. Функция распределения вероятностей и ее свойства.
- •21. Плотность распределения вероятностей нсв и ее свойства.
- •22. Математическое ожидание, дисперсия и ско непрерывных св.
- •23. Равномерное распределение. Распределение . Распределение Стьюдента.
- •24.Числовые хар-ки ср.Значения нескольких взаимно независимых одинаково распределенных св.
- •25. Нормальное распределение нсв. Вероятность попадания нормально распределенной св в заданный интервал.
- •26. Генеральная совокупность и выборка. Статистическое распределение. Эмпирическая функция распределения. Полигон и гистограмма.
- •27. Статистические оценки параметров распределения. Выборочная средняя как оценка математического ожидания теоретического распределения. Генеральная и выборочная дисперсия. Исправленная дисперсия.
- •28. Точечные оценки параметров распределения. Метод моментов.
- •29. Точечные оценки параметров распределения. Метод наибольшего правдоподобия.
- •30. Точность оценки, доверительная вероятность и доверительный интервал. Доверительный интервал для оценки математического ожидания нормального распределения при известном и неизвестном ско.
- •31. Методы расчета характеристик выборки.
- •32. Обработка результатов наблюдений. Метод наименьших квадратов. Линейная аппроксимация экспериментальных данных. Коэффициент корреляции и его свойства.
- •33. Зависимость между случайными величинами. Корреляционная зависимость и уравнение регрессии.
- •34. Статистическая гипотеза. Виды гипотез. Ошибки 1-го и 2-го рода. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия.
- •§ 1. Статистическая гипотеза. Нулевая и конкурирующая, простая и сложная гипотезы
- •§ 2. Ошибки первого и второго рода
- •§ 3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •35. Критическая область. Отыскание критических областей. Мощность критерия.
- •§ 4. Критическая область. Область принятия гипотезы. Критические точки
- •§ 5. Отыскание правосторонней критической области
- •§ 6. Отыскание левосторонней и двусторонней критических областей
- •§ 7. Дополнительные сведения о выборе критической области. Мощность критерия
- •36. Сравнение двух дисперсий нормальных генеральных совокупностей.
- •37. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности.
§ 2. Ошибки первого и второго рода
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т. е. могут быть допущены ошибки двух родов.
Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза.
Ошибка второго рода состоит в том, что будет принята неправильная гипотеза.
Подчеркнем, что последствия этих ошибок могут оказаться весьма различными. Например, если отвергнуто правильное решение.«продолжать строительство жилого дома», то эта ошибка первого рода повлечет материальный ущерб; если же принято неправильное решение «продолжать строительство», несмотря на опасность обвала стройки, то эта ошибка второго рода может повлечь гибель людей. Можно привести примеры, когда ошибка первого рода влечет более тяжелые последствия, чем ошибка второго рода.
Замечание I. Правильное решение может быть принято также в двух случаях:
1) гипотеза принимается, причем и в действительности она правильная;
2) гипотеза отвергается, причем и в действительности она неверна.
Замечание 2. Вероятность совершить ошибку первого рода принято обозначать через α; ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости, равный 0,05, то это означает, что в пяти случаях из ста имеется риск допустить ошибку первого рода (отвергнуть правильную гипотезу).
§ 3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или v2- по закону Фишера-Снедекора, Т-по закону Стьюдента, χ2-по закону «хи квадрат» и т. д. Поскольку в этом параграфе вид распределения во внимание приниматься не будет, обозначим эту величину в целях общности через К.
Статистическим критерием (или просто критерием) называют случайную величину K, которая служит для проверки нулевой гипотезы.
Например, если проверяют гипотезу о равенстве дисперсий двух нормальных генеральных совокупностей, то в качестве критерия К принимают отношение исправленных выборочных дисперсий: F=s12/s22.
Эта - величина случайная, потому что в различных опытах дисперсии принимают различные, наперед неизвестные
значения, и распределена по закону Фишера-Снедекора. Для проверки гипотезы по данным выборок вычисляют
частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия.
Наблюдаемым значением Kнабл называют значение критерия, вычисленное по выборкам. Например, если по двум
выборкам найдены исправленные выборочные дисперсии
s12= 20 и s22= 5, то наблюдаемое значение критерия F: Fнабл=s12/s22=20/5=4.