Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
урок 14, 11 класс.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
315.24 Кб
Скачать

3. Проверка гипотезы Лоренца – принцип работы электронно-лучевой трубки

Открытие катодных лучей, а также радиоактивности позволили проверить экспериментально гипотезу Лоренца. Воспользуемся электронно-лучевой трубкой (рис. 5)

Рис. 5. Электронно-лучевая трубкой

В вакуумной трубке размещены две пластины: анод и катод. На катод подаётся отрицательный потенциал, на анод – положительный. Для того чтобы в трубке возникли свободные электроны, катод нагревается нитью накала. Свободные электроны металлического катода вблизи его поверхности могут покидать эту поверхность, обладая высокой кинетической энергией за счёт нагревания – явление термоэлектронной эмиссии. Свободные электроны, покинувшие поверхность катода, попадают в зону действия электрического поля между анодом и катодом. Линии напряжённости этого поля направлены от анода к катоду. Электроны, будучи отрицательно заряженными частицами, движутся от катода к аноду – против линии напряжённости поля. Так в трубке возникает электрический ток, направленный от анода к катоду. Если использовать анод, покрытый специальным материалом, который светится при попадании на него заряжённых частиц, можно пронаблюдать место попадания электронов по световому пятну. Именно так и работает электронно-лучевая трубка. При подаче напряжения на анод и катод мы видим небольшое зелёное пятно на аноде – это место бомбардировки экрана электронами.

4. Опыты с осциллографом

Если воспользоваться осциллографом (рис.6), то будет показано не световое пятно, а светящаяся линия. Когда одним из полюсов подводят к горизонтальной линии, находящейся на осциллографе – она отклоняется от своего первоначального значения в направлении перпендикулярном направлению скорости и направлению линий магнитного поля, поскольку магнитное поле направлено от северного полюса к южному. Это на качественном уровне подтверждает гипотезу.

Попытаемся получить не только качественные, но и количественные результаты. Для этого будем проверять зависимость силы действующей со стороны магнитного поля от различных факторов. В частности от скорости движения электронов. Каким образом можно поменять скорость движения электронов в осциллографе? При помощи регулировки яркости линии на осциллографе можно изменить скорость движения электронов в осциллографе. Чем ярче линия – тем быстрее движется электроны внутри трубки. Если поднести магнит к осциллографу северным полюсом и менять скорость движения электронов – то по мере уменьшения яркости – искажение лини также будет уменьшаться. Это означает, что сила, действующая со стороны магнитного поля на электроны, при уменьшении скорости электронов тоже уменьшается. Более точные измерения дадут нам прямую пропорциональность между силой, действующей со стороны магнитного поля на движущиеся заряды и скоростью этих зарядов. Сила, действующая на заряды со стороны магнитного поля, пропорциональна индукции – если поднести несколько магнитов к осциллографу, то искажение будет гораздо сильнее. Величина силы действующей со стороны магнитного поля на движущийся заряд зависит от взаимного направления вектора магнитной индукции и вектора скорости движения частиц – при поднесении магнитов к осциллографу южным полюсом – линия будет искажаться в противоположном направлении.

Рис. 6. Осциллограф