Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ Моделирование и оптимизация.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
701.95 Кб
Скачать

Свойства матрицы планирования эксперимента

Первое свойство - симметричность относительно центра эксперимента – проявляется в правиле: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, т.е. xij =0,

где i - номер опыта,

j - номер фактора,

N - число опытов.

Второе свойство (условие нормировки): сумма квадратов каждого столбца равна числу опытов, т.е. xij2 =N.

Два других свойства относятся к совокупности столбцов матрицы.

Третье свойство - ортогональность матрицы, когда сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, т.е.

xij xin=0 , j¹n.

Это правило используется при построении плана эксперимента, то есть при определении каким образом нужно менять значения факторов в опытах. Это правило показывает, что в ортогональном планировании при четном числе уровней, на которых фиксируется каждый фактор, то эти уровни должны быть симметрично расположены относительно центральной точки х=0, при нечетном числе уровней должна использоваться и центральная точка

ПФЭ обладает ортогональной матрицей планирования. Ортогональность позволяет оценивать коэффициенты модели регрессии независимо друг от друга, т.е. избавиться от неопределенности, связанной с неоднозначным оцениванием этих коэффициентов.

Четвертое свойство (ротатабельность): точки в матрице планирования подбираются так, что точность предсказаний значений выходного параметра на основании математической модели одинакова на равных расстояниях от центра эксперимента и не зависит от направления, т.е. дисперсия отклика одинакова на одном расстоянии от центра плана при любом направлении в факторном пространстве. В упрощенном виде это означает, что все точки плана лежат на окружности (сфере, гиперсфере).

Если матрица обладает всеми четырьмя свойствами, то она составлена правильно.

Определение коэффициентов линейной регрессионной модели при планировании эксперимента

Р

(14)

ассмотрим вопрос об определении коэффициентов линейной модели, считая, что задачей эксперимента является проверка гипотезы об адекватности модели

y = b0 + b1 x1 + b2 x2.

После проведения опытов неизвестными величинами в этом выражении будут только коэффициенты b0, b1, b2. Для N опытов можно составить систему линейных условных уравнений. После ее решения методом наименьших квадратов определяются оценки коэффициентов:

bj= ( 15)

Так, при N=4 получим:

b1 = [(-1)y1 + (+1)y2 +(-1)y3 +(+1)y4] / 4;

b2 = [(-1)y1 + (-1)y2 +(+1)y3 +(+1)y4] / 4.

Таким образом, благодаря кодированию факторов расчет коэффициентов превратился в простую процедуру.

Запишем уравнение y = b0 х0 + b1 x1 + b2 x2 для средних арифметических значений переменных.

(16 )

Так как матрица обладает свойством симметрии, то , поэтому .

Для того чтобы получить возможность определения b 0 по формуле (15), в матрицу вводят фиктивную переменную х0, которая во всех опытах принимает значение +1. Составленная линейная модель несколько видоизменяется:

у= b0 х0 + b1 x1 + b2 x2.

Положительные коэффициенты при хij пропорциональны степени влияния факторов, отрицательные - обратно пропорциональны.

Линейная модель не всегда в полной мере описывает объект исследования. Часто нелинейность связана с взаимным влиянием факторов, и задачей полного факторного эксперимента является установление степени такого взаимодействия. Для этого перемножением столбцов матрицы получают новый столбец произведений двух факторов так, что матрица размерности 22 будет иметь вид, представленный в табл.4.