
- •Государственное бюджетное образовательное учреждение высшего профессионального образования
- •И.Г.Белявская Учебное пособие по изучению дисциплины специализации
- •260100 «Продукты питания из растительного сырья»
- •Утверждено
- •Рецензенты
- •Моделирование как средство научного исследования.
- •Основные сведения о моделях и моделировании.
- •1. Классификация математических моделей
- •Правила построения моделей
- •Определить объект исследования.
- •Выбрать критерий (цель) исследования.
- •Определить систему ограничений целевой функции.
- •Постановка и структуризация задачи при математическом моделировании технологического процесса
- •Основные понятия планирования эксперимента
- •Однофакторный эксперимент.
- •Основные положения планирования многофакторного эксперимента
- •2. Кодированные значения фактора
- •Матрица планирования полного факторного эксперимента ( пфэ)
- •3. Матрица планирования пфэ 22
- •4. Матрица планирования пфэ 23
- •Свойства матрицы планирования эксперимента
- •Определение коэффициентов линейной регрессионной модели при планировании эксперимента
- •5. Матрица планирования эксперимента 22 с учетом взаимодействия факторов
- •6. Матрица планирования эксперимента 23 с учетом взаимодействия факторов
- •7. Матрица планирования эксперимента 22 с учетом квадратичности факторов
- •8. Матрица планирования эксперимента с параллельными опытами
- •Планирование дробного факторного эксперимента
- •9. Матрица планирования дробного факторного эксперимента 23
- •10. Число опытов при планировании дробных экспериментов.
- •Проведение обработки результатов эксперимента
- •Проверка воспроизводимости эксперимента.
- •Получение оценок коэффициентов модели
- •Проверка значимости коэффициентов математической модели
- •Проверка адекватности математической модели
- •Представление экспериментальных данных.
- •Решение задачи оптимизации
7. Матрица планирования эксперимента 22 с учетом квадратичности факторов
-
№
опыта
x0
x1
x2
x3= х1х2
х4=х12
х5=х22
у
1
+1
-1
-1
1
+1
+1
у1
2
+1
+1
-1
-1
+1
+1
у2
3
+1
-1
+1
-1
+1
+1
у3
4
+1
+1
+1
1
+1
+1
у4
Итак, полный факторный эксперимент при варьировании факторов на двух уровнях позволяет оценить линейные эффекты эксперимента.
Из-за действия неучтенных (неконтролируемых или неуправляемых) факторов отклик объекта носит случайный характер. Поэтому для каждого сочетания факторов, т.е. в каждой точке факторного пространства, обычно выполняется не один, а серия из m опытов, которые называются параллельными (дублированными). Дублирование позволяет проверить воспроизводимость эксперимента и адекватность модели и исследуемого процесса. В качестве значений отклика принимается среднее арифметическое ỳ i из m измерений. Матрица планирования эксперимента с параллельными опытами представлена в таблице 8.
8. Матрица планирования эксперимента с параллельными опытами
№ |
x1 |
x2 |
... |
xK |
Параллельные опыты |
|
|||
опыта |
|
|
|
|
1 |
2 |
... |
m |
|
1 |
-1 |
-1 |
... |
-1 |
у11 |
у12 |
... |
у1m |
1 |
2 |
+1 |
-1 |
... |
+1 |
у21 |
у22 |
... |
у2m |
2 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
n |
+1 |
+1 |
... |
+1 |
уn1 |
уn2 |
... |
уnm |
n |
Планирование дробного факторного эксперимента
Дробный факторный эксперимент, сохраняя все свойства полного факторного эксперимента (симметричность, выполнение условия нормировки, ортогональность, рототабельность), проводится при меньшем числе опытов. Возможность сокращения числа опытов при использовании линейной модели предоставляется в связи с тем, что в полном факторном эксперименте число опытов больше числа коэффициентов модели.
Для пояснения принципа, на котором основано сокращение числа опытов, обратимся к матрице 22 полного факторного эксперимента, представленной в табл. 5. Используя эту матрицу, можно вычислить четыре коэффициента модели. Однако при принятом условии линейности модели b12=0 достаточно определить три коэффициента: b0, b1, b3, вектор-столбец х1х2 можно использовать для нового фактора х3.
Если проверить возможность смешивания оценок, то можно заметить, что оно имеет место при различных сочетаниях вектор-столбцов в связи с их совпадением. Однако благодаря тому, что модель линейна, парные взаимодействия незначительны, и взаимодействия практически не влияют на достоверность вычисленных оценок.
Таким образом, оказалось, что для изучения трех факторов достаточно поставить четыре опыта вместо восьми. Сказанное можно обобщить правилом: для сокращения числа опытов новому фактору следует присвоить без изменения знаков вектор-столбец матрицы, принадлежащий взаимодействию, которым можно пренебречь.
Матрица 22 (табл.5) с заменой х1х2 на х3, представляющая собой половину матрицы 23 полного факторного эксперимента, называется полурепликой.