Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вадецкий Ю.В. Бурение нефтяных и газовых скважи...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.18 Mб
Скачать

2.6. Оборудование и инструмент для бурения скважин

При бурении вращательным способом, как и сверлении отверстия в любом материале, необходимо, чтобы разрушающему инструменту (долоту, коронке, сверлу и т.п.) передавалось, во-первых, вращательное движение, во-вторых, нагрузка, обеспечивающая достаточный нажим на разрушаемый материал, а также были созданы условия для удаления разрушенных частиц вещества (породы). Исходя из этого применяют оборудование для бурения скважин, состоящее из ротора, вертлюга с буровым шлангом, буровых насосов и силового привода. В случае если долота приводятся во вращение не с поверхности земли, а непосредственно на забое, кроме перечисленного оборудования используют гидравлические забойные двигатели или электробуры.

Таблица 2.10 Технические характеристики роторов различных конструкций

Показатели

Тип ротора

Р-360

Р-560

Р-700

Р-950

Р-1260

Диаметр отверстия в столе

360

560

700

950

1 260

ротора, мм

Допускаемая статическая

1250

2500

5000

6300

8000

нагрузка на стол, кН

Максимальная частота

200

250

350

350

350

вращения стола ротора,

об/мин

Расстояние от центра

900

1353

1353

1651

до цепного колеса, мм

Статический крутящий

12,3

35

80

120

180

момент на столе ротора, кН • м

Тип зубчатой передачи

Коническая

Приводной вал:

диаметр (выходной), мм

92

150

150

150

150

длина выходной части, мм

165

140

165

165

250

Роторы применяют для передачи вращения колонне бурильных труб в процессе бурения, поддержания ее на весу при спуско-подъемных операциях и вспомогательных работах. Ротор — это редуктор, передающий вращение вертикально подвешенной колонне бурильных труб от горизонтального вала трансмиссии (табл. 2.10). Станина ротора воспринимает и передает на основание все нагрузки, возникающие в процессе бурения и при спускоподъемных операциях. Внутренняя полость станины представляет собой масляную ванну. На внешнем конце вала ротора, на шпонке, может быть цепное колесо или полумуфта карданного вала. Стол ротора вращается на подшипниках качения. При отвинчивании долота или для предупреждения вращения бурильной колонны от действия реактивного момента ротор застопоривают защелкой или стопорным механизмом.

При передаче вращения ротору от двигателя через лебедку скорость вращения ротора изменяют при помощи передаточных механизмов лебедки или же путем смены цепных колес. Чтобы не связывать работу лебедки с работой ротора, в ряде случаев при роторном бурении применяют индивидуальный, т. е. не связанный с лебедкой, привод к ротору.

Вертлюг применяют для соединения талевой системы с бурильной колонной. Он обеспечивает, во-первых, вращение бурильной колонны, подвешенной на крюке, и, во-вторых, подачу через нее промывочной жидкости (табл. 2.11).

Все вертлюги имеют принципиально общую конструкцию. Вертлюг состоит из двух узлов — системы вращающихся и невращающихся деталей. Невращающуюся часть вертлюга подвешивают к подъемному крюку, а к вращающейся части вертлюга подвешивают бурильную колонну.

Для соединения с бурильным инструментом на нижний конец ствола вертлюга навинчивается переводник с левой резьбой. Подача промывочной жидкости от неподвижной нагнетательной линии к вертлюгу и далее к вращающимся бурильным трубам осуществляется при помощи гибкого резинового шланга (рукава).

Буровой шланг состоит из внутреннего резинового слоя, нескольких слоев прокладок из прорезиненной ткани с соответственным числом промежуточных слоев резины, металлических плетенок и наружного слоя резины (рис. 2.10).

В настоящее время применяют буровые шланги, рассчитанные на давление 32, 25, 20, 16 и 10 МПа. Буровые шланги выпускаются длиной от 10 до 18 м с условными внутренними диаметрами 63, 80 и 100 мм. Для очень высоких давлений используют металлические шланги, состоящие из отдельных секций, шарнирно соединенных друг с другом.

В последнее время за рубежом, особенно при бурении на море, используются силовые вертлюги (верхний вращатель). Верхний вращатель бурильной колонны уже давно используется при бурении мелких скважин малого диаметра с передвижных буровых установок, где он установлен на подвижной траверсе, которая перемещается по вертикали при помощи гидроцилиндров. При бурении скважин на нефть и газ силовой вертлюг выполняет функции крюка, вертлюга, ротора, механических ключей. При его использовании не нужна бурильная ведущая труба и шурф под нее, а также намного облегчается труд помощника бурильщика, поскольку элеватор механически подается в необходимую позицию. Вместо наращиваний одиночками можно наращивать бурильную колонну трехтрубными свечами.

Таблица 2.11 Технические характеристики вертлюгов, выпускаемых ОАО «Уралмаш»

Тип вертлюга

УВ-250 МА

УВ-320 МА

УВ-450 МА

Допускаемая (максимальная) нагрузка, кН

2500

3200

4500

Динамическая нагрузка (при 100 об/мин), кН

1450

2000

2600

Максимальное давление прокачиваемой жидкости (раствора) в стволе, МПа

25/32

32/25

40

Габаритные размеры сменной верхней трубы, мм: внутренний диаметр наружный диаметр высота

75 90 220

75 90 220

75 90 250

Размеры штропа, мм: верхнее сечение высота внутренний радиус

140x150 1738

125

150x170 1950

125

170x190 2185

125

Просвет для подвешивания на крюке, мм

510

540

832

Диаметр пальца штропа, мм

115

140

140

Тип присоединительной резьбы ствола (левой)

3-152Л

3-171Л

3-171Л

Соединение ствола с буровым рукавом

Фланцевое

Фланцевое

Фланцевое или резьбовое через проводник

Габаритные размеры, мм: высота с переводником ширина по пальцам штропа

2850 1090

3000 1212

3360

1375

Масса, кг

2200

2980

4100

Основной недостаток существующих конструкций силовых вертлюгов — высокая стоимость. Они пока не нашли применения в нашей стране, да и за рубежом они используются не часто, главным образом при бурении скважин с морских оснований и горизонтальных скважин. Вместе с тем нельзя не отметить, что это перспективный механизм, который со временем займет достойное место в буровой технике.

При бурении осуществляется промывка скважины при помощи буровых насосов. Буровые насосы предназначены для подачи под давлением промывочной жидкости в скважину. Для бурения используются только горизонтальные приводные двух- и трехцилиндровые поршневые насосы (рис. 2.11). При вращении вала 7с кривошипом 6 шатун 5, совершая колебательное движение, приводит в движение крейцкопф 4, двужущийся возвратно-поступательно в прямолинейном направлении, и связанный с ним при помощи штока 3 поршень 12, который совершает движение внутри цилиндра 2. Всасывающие клапаны 11 соединены при помощи всасывающего трубопровода 8, снабженного фильтром 9, с приемным чаном 10. Нагнетательные клапаны 13 соединены с нагревательным компенсатором 1 и напорной линией 14. При движении поршня вправо в левой части цилиндра создается разряжение, под давлением атмосферы жидкость из приемного чана 10 поднимается по всасывающему трубопроводу 8, открывает левый всасывающий клапан 11 и поступает в цилиндр насоса. В то же время в правой полости цилиндра жидкость нагнетается (вытесняется) в напорную линию через правый нагнетательный клапан 13. Левый нагнетательный клапан 13 и правый всасывающий 11 при этом закрыты. При обратном движении поршня всасывание происходит в правой полости цилиндра, а нагнетание — в левой. Таким образом, при передвижении поршня в какую-либо сторону в одной половине цилиндра происходит всасывание, а в другой — нагнетание жидкости, т. е. наблюдается двойное действие насоса.

Достаточно широко применяются трехцилиндровые (трехпоршневые) буровые насосы одностороннего действия. К основным отличиям и особенностям буровых насосов этого типа относятся: наличие трех цилиндропоршневых пар одностороннего Действия; повышенные линейные скорости поршней (число ходов в единицу времени) и связанная с этим необходимость установки во всасывающей трубе подпорного насоса; значительно меньшая степень неравномерности подачи жидкости и улучшенные динамические характеристики работы приводной и гидравлических частей.

Рис. 2.10. Буровой шланг (рукав):

1 — тканевый слой;

2 — резиновый слой;

3 — металлическая оплетка;

4 — штуцер

Подачей бурового насоса называют количество жидкости, подаваемое насосом в единицу времени.

Завод «Уралмаш» выпускает буровые насосы двух типов: двух-поршневой насос двустороннего действия — дуплекс УНБ-600А и трехпоршневые насосы одностороннего действия — триплекс УНБТ-950А, УНБТ-1180А1 и УНБТ-750 (табл. 2.12).

Шифр насосов следует читать так: УНБ-600А — уралмашевский насос буровой мощностью 600 кВт; УНБТ-950А — уралмашевский насос буровой трехпоршневой мощностью 950 кВт.

Эти насосы характеризуются оптимальными параметрами кри-вошипно-шатунного механизма, надежным исполнением гидравлической и механической частей, оборудованы компенсаторами на входе и выходе, системой смазки трущихся частей, консольно-поворотными кранами для облегчения работ по замене сменных деталей и узлов гидравлической части, а также автоматическими предохранительными клапанами.

ОАО «Волгоградский завод буровой техники» выпускает трехпоршневые насосы одностороннего действия НБТ-475, НБТ-600-1 и НБТ-235, которые характеризуются оптимальными параметрами и конструкцией кривошипно-шатунного механизма, надежным исполнением механической и гидравлической частей, оборудованы пневматическими компенсаторами на входе и выходе и системой смазки трущихся частей (табл. 2.13).

От буровых насосов промывочная жидкость по нагнетательной линии (манифольду) подается в буровой шланг и далее в вертлюг. В состав нагнетательной линии входят: компенсаторы, нагнетательный трубопровод, стояк и задвижки.

Компенсаторы (воздушные колпаки) служат для уменьшения колебаний давления, вызываемых неравномерностью подачи промывочной жидкости буровыми насосами. Компенсатор представляет собой резервуар, в котором газовая подушка является своеобразной пружиной, смягчающей гидравлические толчки при движении неравномерно поступающей жидкости. Компенсаторы устанавливаются непосредственно на насосе.

Нагнетательный трубопровод предназначен для подачи промывочной жидкости от насоса к напорному буровому рукаву. Нагнетательный трубопровод состоит из горизонтального и вертикального участков. На горизонтальном участке трубопровода монтируются патрубки для присоединения к насосам, обвязки противовыбросового оборудования, магистральные и пусковые задвижки и патрубок для манометра. Горизонтальный участок трубопровода выполняется с уклоном в сторону насосов для обеспечения стекания промывочной жидкости через пусковую задвижку, которая устанавливается в самой низкой точке трубопровода.

Стояк — вертикальный участок трубопровода — в верхней части имеет горловину с фланцем для присоединения бурового шланга, а в нижней части — патрубок с задвижкой для присоединения промывочных агрегатов и патрубок для манометра.

На нагнетательном трубопроводе монтируют датчики давления и расхода бурового раствора.

Рис. 2.11. Схема работы двухцилиндрового бурового насоса:

1-~ компенсатор; 2 — цилиндр; 3 — шток; 4 — крейцкопф; 5 — шатун; 6 — кривошип; 7 — вал; 8 -— всасывающий трубопровод; 9— фильтр; 10— приемный чан; 11всасывающие клапаны; 12 — поршень; 13 — нагнетательные клапаны; 14 — напорная линия

Нагнетательный трубопровод изготавливается из толстостенных стальных труб диаметром 114... 146 мм, которые свариваются между собой в секции. Секции соединяются между собой при помощи фланцев или монтажных компенсаторов, а также резиновых высоконапорных шлангов. После сборки нагнетательные трубопроводы спрессовываются на полуторократное рабочее давление.

Пусковые задвижки предназначены для перевода бурового насоса с холостого хода на рабочий, а также для опоражнивания нагнетательного трубопровода во время остановки насоса.

В процессе эксплуатации буровых насосов в нагнетательном трубопроводе может создаться давление, превышающее допустимое. Это может привести к разрыву напорной линии и самого насоса, к травмированию обслуживающего персонала. Для предупреждения аварий такого рода на каждом буровом насосе монтируется

Таблица 2.12 Параметры буровых насосов, выпускаемых ОАО «Уралмаш»

Показатели

Тип насосов

УНБ-600А

УНБТ-950А, УНБТ-1180А1

УНБТ-750

Мощность, кВт

600

950/1180

750

Число цилиндров, шт.

2

3

3

Максимальное число ходов поршня в минуту

65

125

160

Максимальная частота вращения входного вала, об/мин

320

556

687

Длина хода поршня, мм

400

290

250

Максимальное давление на выходе, МПа

25

32

35

Максимальная идеальная подача, л/с

51,9

46

50,7

Тип зубчатой передачи

Косозубая

Шевронная

Шевронная

Передаточное число редуктора

4,92

4,448

4,307

Условный проход коллектора, мм: входного выходного

275 109

250 100

250 100

Габаритные размеры, мм:

длина

высота

ширина

5100

1877

2626

5390

2204

2757

5030

2057

2530

специальное устройство, в которое вставляется предохранитель — тарированная на определенное давление пластина. Это устройство соединяется со сливной трубой, через которую при разрыве предохранительной пластины промывочная жидкость отводится в приемную емкость.

Буровые установки приводятся в действие силовыми приводами. Под силовым приводом понимается совокупность двигателей и регулирующих их работу устройств, преобразующих тепловую или электрическую энергию в механическую, управляющих преобразованной механической энергией и передающих ее к исполнительным механизмам буровой установки (насосу, ротору, лебедке и др.).

Привод основных исполнительных механизмов буровой установки (лебедки, буровых насосов, ротора) называется главным приводом. В зависимости от вида двигателя и типа передачи он может быть электрическим, дизельным, дизель-гидравлическим,

Таблица 2.13 Параметры буровых насосов, выпускаемых ВЗБТ

Тип насосов

НБТ-475

НБТ-600-1

НБТ-235

Мощность, кВт

475

600

235

Число цилиндров, шт.

3

3

3

Максимальное число ходов поршня в минуту

145

145

160

Максимальная частота вращения входного вала, об/мин

457

453

1454

Длина хода поршня, мм

250

250

160

Максимальное давление на выходе, МПа

25

25

25,4

Максимальная идеальная подача, л/с

45,65

45,6

26,74

Тип зубчатой передачи

Косозубая

Передаточное число редуктора

3152

3152

9,09

Условный проход коллектора, мм выходного входного

95 205

60 156

Габаритные размеры, мм:

длина

высота

ширина

4560

1768

2180

2000

1290

1667

дизель-электрическим и газотурбинным. Наиболее широко применяются в современных буровых установках электрический, дизельный, дизель-гидравлический и дизель-электрический приводы.

Основным преимуществом электрического привода переменного тока являются его относительная простота в монтаже и эксплуатации, высокая надежность, экономичность. В то же время буровые установки с этим типом привода можно применять лишь в электрифицированных районах.

Дизельный привод применяют в районах, не обеспеченных электроэнергией необходимой мощности. Преимуществами двигателей внутреннего сгорания при использовании в качестве привода являются высокий КПД, небольшие расход топлива, воды и масла на 1 кВт мощности. Основной недостаток ДВС — отсутствие реверса, поэтому необходимо специальное устройство для получения обратного хода. ДВС типа дизель допускают перегрузку не выше 20 %. Для их обслуживания требуется квалифицированный персонал.

Дизель-гидравлический привод состоит из ДВС и турбопередачи. Турбопередача — это промежуточный механизм, встроенный обычно между дизелем и трансмиссией. Применение турбопередачи обеспечивает: плавный подъем груза на крюке; работу двигателя, если нагрузка на крюке больше той, которую сможет преодолеть ДВС, в этом случае двигатель будет работать при пониженных, но вполне устойчивых оборотах; большую долговечность передачи.

Наибольшим преимуществом обладает привод от электродвигателей постоянного тока, в конструкции которого отсутствуют громоздкие коробки перемены передачи, сложные соединительные части и т.п. Электрический привод постоянного тока имеет удобное управление, может плавно изменять режим работы лебедки или ротора в широком диапазоне.

Прогресс в области создания тиристорных преобразователей переменного тока в постоянный открыл широкие возможности использования в качестве привода электродвигателей постоянного тока, питаемых через тиристорные выпрямители от сетей переменного тока.

Дизель-электрический привод состоит из приводного электродвигателя, связанного с исполнительным механизмом, генератора, питающего этот электродвигатель, и дизеля, приводящего во вращение генератор.

Силовые приводы подразделяются на индивидуальные и групповые. Индивидуальный привод приводит в действие один исполнительный механизм или отдельные его части, групповой — два и более исполнительных механизма.

Технология бурения нефтяных и газовых скважин имеет свои особенности и предъявляет определенные требования к силовому приводу. В процессе бурения основная часть мощности потребляется буровыми насосами и ротором, а в процессе спускоподъемных операций — лебедкой и компрессором. Работа насосов в процессе

бурения характеризуется постоянством нагрузки на силовой природ. Во время СПО привод имеет резко переменную нагрузку — от нулевой (холостого хода двигателей) до максимальной. При подъеме инструмента из скважины необходимо обеспечить в начале подъема каждой свечи плавное включение лебедки и постепенное увеличение скорости подъема, так как резкое включение и мгновенное увеличение скорости могут привести к разрыву талевого каната или поломке оборудования. При ликвидации аварий в скважине привод часто работает с резкопеременными нагрузками, превышающими расчетные.

К силовому приводу буровых установок предъявляются следующие основные требования: соответствие мощности условиям работы исполнительных механизмов, гибкость характеристики, достаточная надежность и экономичность.

Гибкость характеристики определяется способностью привода автоматически или при участии оператора быстро приспосабливаться в процессе работы к изменениям нагрузок и скоростей работы исполнительных механизмов при условии рационального использования мощности.

Рис. 2.12. Кинематическая схема буровой установки с дизельным приводом

Нагрузка и скорости буровой лебедки и ротора в процессе работы могут изменяться в больших пределах (от 1:4 до 1:10). Двигатели не обладают такой гибкой характеристикой, поэтому в приводах современных буровых установок применяются устройства искусственной приспосабливаемости, т. е. между двигателем и исполнительным механизмом устанавливаются промежуточные передачи. Для этого применяют три типа передач: механические (зубчатые или цепные многоступенчатые коробки передач), гидравлические (турботрансформаторы) и электрические (электромашинные передачи постоянного тока).

В качестве передаточных устройств от двигателя к исполнительному механизму применяются клиноременные, цепные и карданные передачи, а для блокировки нескольких двигателей — клиноременные и цепные передачи (рис. 2.12, 2.13).