
- •Оглавление
- •Глава 5. Основы математической теории информации 58
- •Глава 6. Элементы теории чисел 74
- •6.2.1. Основные определения 83
- •Глава 7. Алгебраические структуры 87
- •Введение
- •Глава 1.Введение
- •1.1.Основные понятия криптографии
- •1.1.1.История развития криптографии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.1.2.Сложность алгоритмов
- •1.1.3.Стойкость криптографических систем
- •Глава 2.Элементы теории множеств
- •2.1.Основные понятия теории множеств
- •2.1.1.Обозначения и способы задания множеств
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.2.Операции над множествами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.3.Прямое произведение множеств
- •П римеры решения задач
- •Задачи для самостоятельного решения
- •2.2.Отношения между множествами
- •2.2.1.Определение бинарных отношений
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2.2.Представление бинарных отношений в виде графа, матрицы
- •Примеры решения задач
- •Построенная таблица есть таблица бинарного отношения. Задачи для самостоятельного решения
- •2.2.3.Свойства бинарных отношений, отношение эквивалентности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 3.Булева алгебра
- •3.1.Булевы функции
- •3.1.1.Понятие булевой функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.2.Суперпозиция функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.3.Двойственные функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.4.Логические схемы
- •Примеры решения задач
- •3.2.Нормальные формы
- •3.2.1.Разложение функций по переменным
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.2.2.Минимизация нормальных форм, карты Карно
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Полиномы Жегалкина, алгоритм их построения для произвольных функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.3.Полные системы функций
- •3.3.1.Полнота множества функций
- •Примеры решения задач
- •Глава 4.Элементы теории графов
- •4.1.Основные понятия теории графов
- •4.1.1.Способы задания графов, основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.2.Числовые характеристики графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.3.Операции с графами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.4.Изоморфизм графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.6.Расстояния в графе, центры графа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.7.Эйлеровы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.8.Алгоритм построения Эйлерова цикла
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.9.Гамильтоновы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.10.Алгоритм построения гамильтонова цикла в графе
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.2.Алгоритм Краскала для построения минимального остовного дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.3.Обходы дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •Вопросы для повторения
- •Глава 5.Основы математической теории информации
- •5.1.Меры информации
- •5.1.1.Мера Хартли
- •Примеры решения задач
- •5.1.2.Мера Шеннона
- •Примеры решения задач
- •5.1.3.Единицы измерения количества информации
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.2.2.Код Хаффмана
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3. Помехоустойчивое кодирование
- •5.3.1. Код с проверкой на четность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.2.Коды с повторением
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.3.Групповой код Хемминга
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.4.Помехозащищенность кода
- •Примеры решения задач
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.2.Теорема о делении с остатком. Алгоритм Евклида
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.3.Отношение сравнимости
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.4.Алгебра вычетов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.5.Решение сравнений вида ахb(mod m)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.6.Применение алгебры вычетов к простейшим шифрам
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.7.Построение и использование хеш-функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •6.2.Алгебра многочленов
- •6.2.1.Основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.2.2.Нод многочленов
- •Примеры решения задач
- •Задачи для самостоятельного решения.
- •6.2.3.Разложение многочлена на множители
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 7.Алгебраические структуры
- •7.1.Основные понятия и свойства алгебраических структур
- •7.1.1.Алгебра
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.2.Группа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.3.Кольцо
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.4.Поле
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.5.Конечные поля
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.Многочлены над конечными полями
- •7.2.1.Каноническое разложение многочлена
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.2.Порядок многочлена над конечным полем
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.3.Сравнение многочленов по данному модулю
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.4.Поиск неприводимых многочленов поля gf(g(X)) над полем gf(р)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.Генераторы псевдослучайных последовательностей
- •7.3.1.Понятие псевдослучайной последовательности чисел
- •7.3.2.Практические методы получения псевдослучайных чисел
- •Задачи для самостоятельного решения
- •7.3.3.Понятие линейной последовательности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.4. Периодичность линейных рекуррентных последовательностей
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.5.Связь линейных рекуррентных последовательностей над конечными полями с многочленами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •214018, Г. Смоленск, проспект Гагарина, 56, т.: (0812) 55 – 41 – 04.
2.1.2.Операции над множествами
Объединением множеств А и В называется множество, которое состоит из тех и только тех элементов, которые содержатся хотя бы в одном их множеств А или В. Объединение множеств обозначают АВ.
Пересечением множеств А и В называется множество, состоящее из элементов, которые содержатся как во множестве А, так и во множестве В. Пересечение множеств обозначают АВ.
Разностью множеств А и В называют множество, состоящее из элементов, которые содержатся в множестве А и не содержатся в множестве В. Разность множеств А и В обозначают как А\В.
Симметрической разностью множеств А и В называют множество, состоящее из элементов, которые содержатся в одном из этих множеств и не содержатся в другом. Симметрическую разность обозначают АВ.
Из определения симметрической разности множеств следует, что А∆В=(А\В) (В\А) и А∆В=(АВ) \ (АВ).
Дополнением множества А называется универсальное множество, не включающее элементы исходного множества. Дополнение множества А обозначают Ā. По определению Ā=U\А.
Примеры решения задач
Заданы два множества. Выполните над ними все известные операции.
А=x| xR и 1x3, B=x| xR и 2x4.
Решение: AB=x|xR и 1x4; AB=x|xR и 2x3;
A\B=x|xR и 1x<2; A∆B=x|xR и 1x<2 и 3<x4;
Ā=x|xR и x<1 и x>3;
Пусть А – множество всех женщин, универсальное множество U – множество всех людей. Тогда Ā – это множество всех мужчин.
Задачи для самостоятельного решения
Опишите на словах элементы следующих множеств: АВС; (АВ)
.
Пусть А={1,3,5,7}; В={2,4,6,8}; С={1,2,3,4,5}. Найдите:
.
Пусть U={1,2,3,4}; A={1,3,4}; В={2,3}, С={1,4}. Найдите:
Изобразите на числовой прямой пересечение, объединение и разность следующих множеств: X1=x|xR и x2-10} и X2={x| |x|<1.
Выполните все известные вам операции над заданными множествами:
А={1,2,3,4}; В={1,3,5}; С={5,6}.
А={a,b,d}; В={b,d,e,h}; U={a,b,c,d,e,f,g,h}.
А={2,4,6,8}; В={3,6,9}; С={1,2,3,…,10}.
В качестве универсального множества данной задачи зафиксируем U={p,q,r,s,t,u,v,w}. Пусть А={p,q,r,s}, В={r,t,v}, С={p,s,t,u}. Найдите элементы следующих множеств:
ВС;
АС;
;
АВС;
;
;
;
В\С.
2.1.3.Прямое произведение множеств
Прямым (декартовым) произведением двух множеств А и В называется совокупность всех упорядоченных пар, первый элемент которых принадлежит А, а второй принадлежит В. Обозначают АВ.
Говоря об упорядоченной паре, имеют ввиду, что два объекта расположены в определенном порядке. Один из них считается первым, другой – вторым.
Декартово произведение множества само на себя (случай когда А=В) обозначают А2.
В общем случае, АВВА. Но если А=В или одно из множеств пусто, то АВ=ВА.
Рассмотрим множество действительных чисел R. Известно, что точка на плоскости может быть задана упорядоченной парой координат. Тогда декартово произведение RR=R2 определяет плоскость координат. Если А и В подмножества множества R (т. е. АR и ВR), то АВ можно изобразить на плоскости.