
- •Оглавление
- •Глава 5. Основы математической теории информации 58
- •Глава 6. Элементы теории чисел 74
- •6.2.1. Основные определения 83
- •Глава 7. Алгебраические структуры 87
- •Введение
- •Глава 1.Введение
- •1.1.Основные понятия криптографии
- •1.1.1.История развития криптографии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.1.2.Сложность алгоритмов
- •1.1.3.Стойкость криптографических систем
- •Глава 2.Элементы теории множеств
- •2.1.Основные понятия теории множеств
- •2.1.1.Обозначения и способы задания множеств
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.2.Операции над множествами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.3.Прямое произведение множеств
- •П римеры решения задач
- •Задачи для самостоятельного решения
- •2.2.Отношения между множествами
- •2.2.1.Определение бинарных отношений
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2.2.Представление бинарных отношений в виде графа, матрицы
- •Примеры решения задач
- •Построенная таблица есть таблица бинарного отношения. Задачи для самостоятельного решения
- •2.2.3.Свойства бинарных отношений, отношение эквивалентности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 3.Булева алгебра
- •3.1.Булевы функции
- •3.1.1.Понятие булевой функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.2.Суперпозиция функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.3.Двойственные функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.4.Логические схемы
- •Примеры решения задач
- •3.2.Нормальные формы
- •3.2.1.Разложение функций по переменным
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.2.2.Минимизация нормальных форм, карты Карно
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Полиномы Жегалкина, алгоритм их построения для произвольных функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.3.Полные системы функций
- •3.3.1.Полнота множества функций
- •Примеры решения задач
- •Глава 4.Элементы теории графов
- •4.1.Основные понятия теории графов
- •4.1.1.Способы задания графов, основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.2.Числовые характеристики графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.3.Операции с графами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.4.Изоморфизм графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.6.Расстояния в графе, центры графа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.7.Эйлеровы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.8.Алгоритм построения Эйлерова цикла
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.9.Гамильтоновы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.10.Алгоритм построения гамильтонова цикла в графе
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.2.Алгоритм Краскала для построения минимального остовного дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.3.Обходы дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •Вопросы для повторения
- •Глава 5.Основы математической теории информации
- •5.1.Меры информации
- •5.1.1.Мера Хартли
- •Примеры решения задач
- •5.1.2.Мера Шеннона
- •Примеры решения задач
- •5.1.3.Единицы измерения количества информации
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.2.2.Код Хаффмана
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3. Помехоустойчивое кодирование
- •5.3.1. Код с проверкой на четность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.2.Коды с повторением
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.3.Групповой код Хемминга
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.4.Помехозащищенность кода
- •Примеры решения задач
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.2.Теорема о делении с остатком. Алгоритм Евклида
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.3.Отношение сравнимости
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.4.Алгебра вычетов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.5.Решение сравнений вида ахb(mod m)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.6.Применение алгебры вычетов к простейшим шифрам
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.7.Построение и использование хеш-функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •6.2.Алгебра многочленов
- •6.2.1.Основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.2.2.Нод многочленов
- •Примеры решения задач
- •Задачи для самостоятельного решения.
- •6.2.3.Разложение многочлена на множители
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 7.Алгебраические структуры
- •7.1.Основные понятия и свойства алгебраических структур
- •7.1.1.Алгебра
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.2.Группа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.3.Кольцо
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.4.Поле
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.5.Конечные поля
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.Многочлены над конечными полями
- •7.2.1.Каноническое разложение многочлена
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.2.Порядок многочлена над конечным полем
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.3.Сравнение многочленов по данному модулю
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.4.Поиск неприводимых многочленов поля gf(g(X)) над полем gf(р)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.Генераторы псевдослучайных последовательностей
- •7.3.1.Понятие псевдослучайной последовательности чисел
- •7.3.2.Практические методы получения псевдослучайных чисел
- •Задачи для самостоятельного решения
- •7.3.3.Понятие линейной последовательности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.4. Периодичность линейных рекуррентных последовательностей
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.5.Связь линейных рекуррентных последовательностей над конечными полями с многочленами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •214018, Г. Смоленск, проспект Гагарина, 56, т.: (0812) 55 – 41 – 04.
Задачи для самостоятельного решения
Являются ли заданные числа корнями предложенных многочленов? Проверьте с помощью схемы Горнера.
а). 5 для f(x)= х4 +х2+5х3-5х;
б). -3 для f(x)= х7+2х6-3х5+ х4 +3х3+3х+9?
в). i для f(x)=ix3- iх2+3х-3i;
г). -i для f(x)=(i+1)x4- х2+iх-2.
Выясните, являются ли следующие многочлены приводимыми над полем Q, R, C? Укажите соответствующее разложение на множители.
а). f(x)= х-2;
б). f(x)= х2-1;
в). f(x)= х2-2;
г). f(x)= х2+1;
д). f(x)= х4+х3;
е). f(x)= х4-2;
ж). f(x)=2 х2+5х+4.
з). f(x)=- х2+iх-2.
Вопросы для повторения
НОД. Простые и составные числа. НОК.
Теорема о делении с остатком. Алгоритм Евклида.
Отношение сравнимости.
Классы вычетов. Полная и приведенная системы вычетов. Теорема Эйлера и Ферма.
Основные определения алгебры многочленов. Деление с остатком.
НОД многочленов.
Разложение многочлена на множители.
Глава 7.Алгебраические структуры
7.1.Основные понятия и свойства алгебраических структур
7.1.1.Алгебра
Пусть дано некоторое непустое множество А.
Бинарной операцией на множестве А называется любое отображение декартова квадрата множества А в себя, т. е. : ААА.
Иначе говоря, любой паре (a,b), принадлежащей А2, ставится в соответствие единственный элемент с тоже из А. Обозначают a b=c. Это так называемое свойство замкнутости операции.
Под алгеброй (алгебраической структурой или системой) понимают упорядоченную пару <А,О>, где А – непустое множество (носитель алгебры), а О – некоторое множество операций, заданных на этом множестве А.
Примеры решения задач
Пусть А множество натуральных чисел, А=N. Рассмотрим операцию “+” и “-”. Являются ли они бинарными?
Решение: (5,7)12, т. е. 5+7=12, 12N. Известно, что при сложении двух натуральных чисел получим натуральное число, следовательно, операция бинарная. Операция “-” не является бинарной операцией на множестве А=N, т. к. 5-7=-2, а -2N.
Задачи для самостоятельного решения
Являются ли следующие структуры алгеброй?
а). <(1; +), >, где ху=х+у-ху;
б). <(1; +), >, где ху=ху-х-у;
7.1.2.Группа
Группой <G,*> называется некоторое множество G c бинарной операцией * на нем, для которых выполняются следующие условия:
1. Операция * ассоциативна, т.е. для любых а,b,c, G справедливо a*(b*c)=(a*b)*с.
2. В G существует нейтральный элемент (единица) е такой, что для любого аG а*е = e*a = a.
3. Для каждого аG существует симметричный (обратный) элемент a -1G, такой что a * a -1 = a -1 * a = e
Если группа G удовлетворяет также следующему условию: для любых а,bG справедливо
а*b=b*а , то она называется коммутативной или абелевой группой.
Единичный e и обратный а -1 элемент группы G для каждого данного элемента аG определяется однозначно указанными выше условиями. Для всех элементов а,b G имеет место равенство (a*b) -1 = b -1*a -1.
Группа называется конечной (бесконечной), если она состоит из конечного (бесконечного) числа элементов. Число элементов конечной группы G называется ее порядком и обозначается G.
Подмножества Н группы G называется подгруппой этой группы, если Н само образует группу относительно операций группы.