
- •Оглавление
- •Глава 5. Основы математической теории информации 58
- •Глава 6. Элементы теории чисел 74
- •6.2.1. Основные определения 83
- •Глава 7. Алгебраические структуры 87
- •Введение
- •Глава 1.Введение
- •1.1.Основные понятия криптографии
- •1.1.1.История развития криптографии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.1.2.Сложность алгоритмов
- •1.1.3.Стойкость криптографических систем
- •Глава 2.Элементы теории множеств
- •2.1.Основные понятия теории множеств
- •2.1.1.Обозначения и способы задания множеств
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.2.Операции над множествами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.3.Прямое произведение множеств
- •П римеры решения задач
- •Задачи для самостоятельного решения
- •2.2.Отношения между множествами
- •2.2.1.Определение бинарных отношений
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2.2.Представление бинарных отношений в виде графа, матрицы
- •Примеры решения задач
- •Построенная таблица есть таблица бинарного отношения. Задачи для самостоятельного решения
- •2.2.3.Свойства бинарных отношений, отношение эквивалентности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 3.Булева алгебра
- •3.1.Булевы функции
- •3.1.1.Понятие булевой функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.2.Суперпозиция функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.3.Двойственные функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.4.Логические схемы
- •Примеры решения задач
- •3.2.Нормальные формы
- •3.2.1.Разложение функций по переменным
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.2.2.Минимизация нормальных форм, карты Карно
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Полиномы Жегалкина, алгоритм их построения для произвольных функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.3.Полные системы функций
- •3.3.1.Полнота множества функций
- •Примеры решения задач
- •Глава 4.Элементы теории графов
- •4.1.Основные понятия теории графов
- •4.1.1.Способы задания графов, основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.2.Числовые характеристики графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.3.Операции с графами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.4.Изоморфизм графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.6.Расстояния в графе, центры графа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.7.Эйлеровы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.8.Алгоритм построения Эйлерова цикла
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.9.Гамильтоновы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.10.Алгоритм построения гамильтонова цикла в графе
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.2.Алгоритм Краскала для построения минимального остовного дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.3.Обходы дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •Вопросы для повторения
- •Глава 5.Основы математической теории информации
- •5.1.Меры информации
- •5.1.1.Мера Хартли
- •Примеры решения задач
- •5.1.2.Мера Шеннона
- •Примеры решения задач
- •5.1.3.Единицы измерения количества информации
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.2.2.Код Хаффмана
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3. Помехоустойчивое кодирование
- •5.3.1. Код с проверкой на четность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.2.Коды с повторением
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.3.Групповой код Хемминга
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.4.Помехозащищенность кода
- •Примеры решения задач
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.2.Теорема о делении с остатком. Алгоритм Евклида
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.3.Отношение сравнимости
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.4.Алгебра вычетов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.5.Решение сравнений вида ахb(mod m)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.6.Применение алгебры вычетов к простейшим шифрам
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.7.Построение и использование хеш-функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •6.2.Алгебра многочленов
- •6.2.1.Основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.2.2.Нод многочленов
- •Примеры решения задач
- •Задачи для самостоятельного решения.
- •6.2.3.Разложение многочлена на множители
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 7.Алгебраические структуры
- •7.1.Основные понятия и свойства алгебраических структур
- •7.1.1.Алгебра
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.2.Группа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.3.Кольцо
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.4.Поле
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.5.Конечные поля
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.Многочлены над конечными полями
- •7.2.1.Каноническое разложение многочлена
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.2.Порядок многочлена над конечным полем
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.3.Сравнение многочленов по данному модулю
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.4.Поиск неприводимых многочленов поля gf(g(X)) над полем gf(р)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.Генераторы псевдослучайных последовательностей
- •7.3.1.Понятие псевдослучайной последовательности чисел
- •7.3.2.Практические методы получения псевдослучайных чисел
- •Задачи для самостоятельного решения
- •7.3.3.Понятие линейной последовательности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.4. Периодичность линейных рекуррентных последовательностей
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.5.Связь линейных рекуррентных последовательностей над конечными полями с многочленами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •214018, Г. Смоленск, проспект Гагарина, 56, т.: (0812) 55 – 41 – 04.
Задачи для самостоятельного решения
Получить хеш-код для сообщения «HASHING» при помощи хеш-функции с параметрами p=17, q=19, кодируя буквы:
порядковым номером в алфавите;
ASCII – символами (HASHING: 72-65-83-72-73-78-71).
Задачи для повторения
Найдите остатки от деления:
(1237156+34)28 на 111;
2300+2200 на 19.
Найдите последние две цифры чисел:
.
Докажите, что 1+3х+9х делится на 13, если х=3n+1, n=0,1,2…
Доказать, что 23n+1+1532n+44n 1 (mod 17).
Доказать, что если а10n+a10m делится на 11, то а делится на 11.
Доказать, что (a+b)p ap+bp (mod p).
Решите следующие сравнения:
2х1 (mod 7);
12x6 (mod 18);
69x16 (mod 307);
164x28 (mod 404);
393x213 (mod 492).
6.2.Алгебра многочленов
6.2.1.Основные определения
Важное значение в теории чисел имеет понятие многочлена или полинома. Многочленом называется выражение вида
|
где аi, 0in - коэффициенты; х – переменная; n - степень многочлена, обозначаемая deg f(x). |
Два многочлена равны тогда и только тогда, когда равны их соответствующие коэффициенты.
Теорема. Пусть f(x) и g(x) многочлены, тогда
.
Многочлен f(х) делится на многочлен g(x), если существует многочлен q(x) такой, что f(x)=q(x)g(x). В этом случае говорят, что многочлен g(x) - делитель многочлена f(x), а f(x) - кратное многочлена g(x).
Для
многочлена f(x)=a0+a1x+…+anxn
коэффициент а0
является постоянным членом.
Многочлены степени
называются
постоянными многочленами -
константами.
Теорема (алгоритм деления многочленов с остатком). Пусть g(x)0 некоторый многочлен. Тогда для каждого многочлена f(x) существует также многочлены q(x) и r(x), что f(x)=q(x)g(x)+r(x), где deg(r(x))<deg(g(x)).
Примеры решения задач
Найдите неполное частное и остаток от деления многочленов f(x)+х6+х3 и g(x)=х3+х2+1.
Решение. Запишем в стандартном виде f(x)= 1x6+0x5+0x4+1x3+0x2+0x+0.
_1x6+0x5+0x4+1x3+0x2+0x+0 |
x3+x2+1 |
|
|||||
x6+ x5+ x3 |
|
x3-x2+x-1 =q(x) |
|
||||
|
_-x5+0x4+0x3+0x2+0x+0 |
|
|
||||
|
-x5- x4 - x2 |
|
|
||||
|
_x4+ 0x3 +x2+0x+0 |
|
|
||||
|
x4+1x3 +1x |
|
|
||||
|
_ -1x3 +x2 - 1x +0 |
|
|
||||
|
-1x3 – x2 -1 |
|
|
||||
|
2x2 - 1x+1 |
=r(x), deg(r(x))<deg(g(x)) |
|
Т.о., f (x)=x6+x3=( x3+x2+1) (x3-x2+x-1)+ 2x2 -x+1.