
- •Оглавление
- •Глава 5. Основы математической теории информации 58
- •Глава 6. Элементы теории чисел 74
- •6.2.1. Основные определения 83
- •Глава 7. Алгебраические структуры 87
- •Введение
- •Глава 1.Введение
- •1.1.Основные понятия криптографии
- •1.1.1.История развития криптографии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.1.2.Сложность алгоритмов
- •1.1.3.Стойкость криптографических систем
- •Глава 2.Элементы теории множеств
- •2.1.Основные понятия теории множеств
- •2.1.1.Обозначения и способы задания множеств
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.2.Операции над множествами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.1.3.Прямое произведение множеств
- •П римеры решения задач
- •Задачи для самостоятельного решения
- •2.2.Отношения между множествами
- •2.2.1.Определение бинарных отношений
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2.2.Представление бинарных отношений в виде графа, матрицы
- •Примеры решения задач
- •Построенная таблица есть таблица бинарного отношения. Задачи для самостоятельного решения
- •2.2.3.Свойства бинарных отношений, отношение эквивалентности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 3.Булева алгебра
- •3.1.Булевы функции
- •3.1.1.Понятие булевой функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.2.Суперпозиция функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.3.Двойственные функции
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.1.4.Логические схемы
- •Примеры решения задач
- •3.2.Нормальные формы
- •3.2.1.Разложение функций по переменным
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.2.2.Минимизация нормальных форм, карты Карно
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Полиномы Жегалкина, алгоритм их построения для произвольных функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.3.Полные системы функций
- •3.3.1.Полнота множества функций
- •Примеры решения задач
- •Глава 4.Элементы теории графов
- •4.1.Основные понятия теории графов
- •4.1.1.Способы задания графов, основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.2.Числовые характеристики графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.3.Операции с графами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.4.Изоморфизм графов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.6.Расстояния в графе, центры графа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.7.Эйлеровы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.8.Алгоритм построения Эйлерова цикла
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.9.Гамильтоновы циклы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.1.10.Алгоритм построения гамильтонова цикла в графе
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.2.Алгоритм Краскала для построения минимального остовного дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •4.2.3.Обходы дерева
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •Вопросы для повторения
- •Глава 5.Основы математической теории информации
- •5.1.Меры информации
- •5.1.1.Мера Хартли
- •Примеры решения задач
- •5.1.2.Мера Шеннона
- •Примеры решения задач
- •5.1.3.Единицы измерения количества информации
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.2.2.Код Хаффмана
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3. Помехоустойчивое кодирование
- •5.3.1. Код с проверкой на четность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.2.Коды с повторением
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.3.Групповой код Хемминга
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •5.3.4.Помехозащищенность кода
- •Примеры решения задач
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.2.Теорема о делении с остатком. Алгоритм Евклида
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.3.Отношение сравнимости
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.4.Алгебра вычетов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.5.Решение сравнений вида ахb(mod m)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.6.Применение алгебры вычетов к простейшим шифрам
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.1.7.Построение и использование хеш-функций
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Задачи для повторения
- •6.2.Алгебра многочленов
- •6.2.1.Основные определения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •6.2.2.Нод многочленов
- •Примеры решения задач
- •Задачи для самостоятельного решения.
- •6.2.3.Разложение многочлена на множители
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •Глава 7.Алгебраические структуры
- •7.1.Основные понятия и свойства алгебраических структур
- •7.1.1.Алгебра
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.2.Группа
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.3.Кольцо
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.4.Поле
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.1.5.Конечные поля
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.Многочлены над конечными полями
- •7.2.1.Каноническое разложение многочлена
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.2.Порядок многочлена над конечным полем
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.3.Сравнение многочленов по данному модулю
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.2.4.Поиск неприводимых многочленов поля gf(g(X)) над полем gf(р)
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.Генераторы псевдослучайных последовательностей
- •7.3.1.Понятие псевдослучайной последовательности чисел
- •7.3.2.Практические методы получения псевдослучайных чисел
- •Задачи для самостоятельного решения
- •7.3.3.Понятие линейной последовательности
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.4. Периодичность линейных рекуррентных последовательностей
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •7.3.5.Связь линейных рекуррентных последовательностей над конечными полями с многочленами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Вопросы для повторения
- •214018, Г. Смоленск, проспект Гагарина, 56, т.: (0812) 55 – 41 – 04.
Задачи для самостоятельного решения
По заданной СДНФ функций построить полином Жегалкина:
;
.
Построить полином Жегалкина с помощью СДНФ для функций:
;
;
;
.
Построить полином Жегалкина двумя способами для функций:
;
;
f(x, y, z)=(1,0,0,1,0,0,0,1).
Заданы следующие функции:
f(x,y)=(0,1,0,1);
;
.
Построить для них полином Жегалкина.
Выясните, имеют ли построенные полиномы следующий линейный вид: а0+а1х1+а2х2+…+аnxn,
. Такие функции называются линейными.
Построить для заданных функций двойственные им. Выясните, являются ли они самодвойственными.
3.3.Полные системы функций
3.3.1.Полнота множества функций
Система функций {f1, f2, …, fn} называется полной, если любую функцию булевой алгебры можно реализовать в виде формулы над этой системой функций.
Система
- полная.
Это следует из теоремы о представлении
функции в виде СДНФ.
Теорема. Пусть даны две системы функций: F={f1, f2, …} и G={g1, g2, …}. Если система F полна и все функции из F можно выразить в виде суперпозиции функций системы G, то система G тоже полна.
Примеры решения задач
Доказать, что система функций
- полная.
Доказательство:
Известно, что F=
- полна. Чтобы доказать, что G=
- полна, нужно выразить любую функцию
через функции системы G:
,
а дизъюнкция и отрицание из F есть в
системе G.
Доказать, что система функций
полна.
Решение.
Известно,
что F=
-полная.
Выразим конъюнкцию и отрицание через
штрих Шеффера:
Задачи для самостоятельного решения
Доказать, что следующие системы функций полные:
;
;
.
.
3.3.2.Базисы
Полная система функций F={f1, f2, …} является базисом, если она минимальная, то есть F – полная, а F/=F\{fi} – не полна для любой .
Например, - полна, но не базис, так как - также полна.
Примеры решения задач
Выясните, является ли система функций
базисом.
Решение.
- базис. Так как
-
полна и
и
не полны.
Задачи для самостоятельного решения
Выясните, являются ли системы функций базисами.
;
;
;
;
.
Вопросы для повторения
Понятие булева функция. Булевы функции от двух переменных, их таблицы истинности.
Способы задания булевых функций. Определения эквивалентных формул. Примеры.
Основные тождества булевой алгебры. Примеры их использования.
Понятие функции, двойственной к данной. Пример нахождения функции, двойственной к данной.
Понятие самодвойственной функции. Алгоритм проверки, является ли функция самодвойственной. Пример.
Понятие элементарной дизъюнкции. Теорема о представлении функции в виде СКНФ. Алгоритм приведения булевой функции к СКНФ. Пример.
Понятие элементарной конъюнкции. Теорема о представлении функции в виде СДНФ Алгоритм приведения булевой функции к СДНФ. Пример.
Понятие минимальной ДНФ. Способы получения минимальной ДНФ. Пример.
Алгебра Жегалкина. Свойства операций. Пример.
Алгоритм представления булевой функции в виде многочлена Жегалкина. Примеры.
Понятие полная система функций. Теорема о полноте системы функций. Примеры полных и неполных систем.
Понятие базис полной системы функций. Примеры.
Построение логической схемы функции.