
- •Контрольная работа Функция нескольких переменных Вариант 1
- •Вариант 2
- •Вариант 3
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 4
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 5
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 6
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 7
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно 0,97 1,05.
- •Вариант 8
- •Вариант 9
- •Найти и изобразить на чертеже область определения функций
- •Проверить, удовлетворяет ли данная функция указанному уравнению .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 10
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 11
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (3,02)3 .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 12
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 13
- •Найти и изобразить на чертеже область определения функций
- •Вариант 14
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 15
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 16
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 17
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (2- )3,02.
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 18
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 19
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (2,03)2/ .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 20
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 21
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 22
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 23
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 24
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (0,99)5,05.
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 25
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Исследовать на экстремум функцию .
Вариант 22
Найти и изобразить на чертеже область определения функций
а) z = y-
; б)
z =
.
Вычислить приближенно 4/((1,03)2+(2,97)2).
Найти частные производные и полный дифференциал функции
.
Вычислить значение производной сложной функции u = arcsin
, где x = sint, y = cost при t = π, с точностью до двух знаков после запятой.
Вычислить значения частных производных функции z = z(x,y) , заданной неявно: x2+y2+z2+2xy-4x-yz-3y-z = 0, в данной точке M0 (1,-1,1) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция u =
указанному уравнению .
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2+2y2+z2-4xz = 8, M0(0,2,0);
б) S: 2x2-y+2z2 = 0, M0(1,10,2).
В направлении какой линии: xy = 4 или x = y в т. М0(2,2) функция z = x3+y3-3xy изменяется скорее в сторону возрастания аргумента x?
Исследовать на экстремум функцию z = y
-y2-x+6y
Найти наибольшее и наименьшее значения функции z = x3-y3-3xy в области
D: x = 0, x = 2, y = -1, y = 2.
Вариант 23
Найти и изобразить на чертеже область определения функций
а) z =
–x; б)
z = arcsin(1-x2-y2)
+ arcsin2xy.
Вычислить приближенно arсtg(0,96/1,05).
Найти частные производные и полный дифференциал функции z = arcsin(xy)-3xy2.
Вычислить значение производной сложной функции
, где x = sin2t, y = tg2 t при t = , с точностью до двух знаков после запятой.
Вычислить значения частных производных функции z = z(x,y) , заданной неявно: x2-y2-z2+2x-4y+6z+12 = 0, в данной точке M0 (0,1,-1) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция u = 3+ln(x2+(y+1)2) указанному уравнению .
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2-y2-2z2-2y = 0, M0(-1,-1,1);
б) S: x2+y2+2z2 = 10, M0(-1,1,2).
В направлении какой линии y2 = 4x или x2+y2 = 5 в т. М0(1,2) функция z = x3+y3 изменяется скорее в сторону возрастания аргумента x?
Исследовать на экстремум функцию z = x2-xy+y2+9x-6y+20.
Найти наибольшее и наименьшее значения функции z = 4(x-y)-x2-y2 в области
D: 2y + x = 4, x-2y = 4.
Вариант 24
Найти и изобразить на чертеже область определения функций
а) z = ln(25-x2-y2); б) z = arctg( ).
Вычислить приближенно (0,99)5,05.
Найти частные производные и полный дифференциал функции z =
.
Вычислить значение производной сложной функции u =
, где x = lnt, y = t2 при t = 1, с точностью до двух знаков после запятой
Вычислить значения частных производных функции z = z(x,y) , заданной неявно: +z3-3z = 3, в данной точке M0 (4,3,1) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция u =
указанному уравнению .
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2+y2-3z2+xy = -2z, M0(1,0,1);
б) S: y2-4y+z = 0, M0(1,-2,-12).
В направлении какой линии: x2 + y2 = 8 или y = -x в т. M0(-2, 2) функция z =
изменяется скорее в сторону возрастания аргумента x.
Исследовать на экстремум функцию z = xy(6-x-y).
Найти наибольшее и наименьшее значения функции z = x2-y2+2xy-4x в области
D: y = x+1, y = 0, x = 3.