
- •Контрольная работа Функция нескольких переменных Вариант 1
- •Вариант 2
- •Вариант 3
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 4
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 5
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 6
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 7
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно 0,97 1,05.
- •Вариант 8
- •Вариант 9
- •Найти и изобразить на чертеже область определения функций
- •Проверить, удовлетворяет ли данная функция указанному уравнению .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 10
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 11
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (3,02)3 .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 12
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 13
- •Найти и изобразить на чертеже область определения функций
- •Вариант 14
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 15
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 16
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 17
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (2- )3,02.
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 18
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 19
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (2,03)2/ .
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 20
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 21
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 22
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 23
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 24
- •Найти и изобразить на чертеже область определения функций
- •Вычислить приближенно (0,99)5,05.
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Вариант 25
- •Найти и изобразить на чертеже область определения функций
- •Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
- •Исследовать на экстремум функцию .
Вариант 19
Найти и изобразить на чертеже область определения функций
а) z =
-8; б)
.
Вычислить приближенно (2,03)2/ .
Найти частные производные и полный дифференциал функции z = y2-4xy+sin(2xy2).
Вычислить значение производной сложной функции u =
, где
,
при t = 0, с точностью до двух знаков после запятой.
Вычислить значения частных производных функции z = z(x,y), заданной неявно: x3+2y3+z3—3xyz-2y-15 = 0, в данной точке M0 (1,-1,2) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция u = ln(x2-y2) указанному уравнению
.
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2+y2-z2+xz+4y = 4, M0(1,1,2);
б) S: x2+5y2+z2 = 10, M0(1,-1,2).
Найти направление наибольшего возрастания функции u = x2y2z в любой точке и в т. М0(2,-1,3) и скорость возрастания в этом направлении.
Исследовать на экстремум функцию z = xy-x2-y2+9.
Найти наибольшее и наименьшее значения функции z = xy-3x-2y в области
D: y = 0, y = 4, x = 0,x = 4.
Вариант 20
Найти и изобразить на чертеже область определения функций
а)
; б)
.
Вычислить приближенно 2,03/((2,03)4+(2,97)2).
Найти частные производные и полный дифференциал функции z = ln(y-x2-3).
Вычислить значение производной сложной функции
, где x = sin t,y = cost при t =
, с точностью до двух знаков после запятой.
Вычислить значения частных производных функции z = z(x,y) , заданной неявно: x2-3y2+z2-2xy+6x-2y-8z+20 = 0, в данной точке M0 (1,-1,2) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция e– cos(x+3y) указанному уравнению
.
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2-y2-z2+xz-4x = -5, M0(-2,1,0);
б) S: x2-y2+z2 = 30, M0(3,2,5).
В направлении какой линии : y2 = 4x или x2+y2 = 5 в т.М0(1,2) функция z = x3+y3 изменяется быстрее в сторону убывания аргумента x.
Исследовать на экстремум функцию z = 2xy-3x2-2y2+10.
Найти наибольшее и наименьшее значения функции z = x2 + xy-2 в области
D: y = 4x2-4, y = 0.
Вариант 21
Найти и изобразить на чертеже область определения функций
а) z = ln(3x-y); б)
z =
.
Вычислить приближенно 3,09e 0,09.
Найти частные производные и полный дифференциал функции z = arcsin(2x-y3)+x.
Вычислить значение производной сложной функции u =
, где x = lnt, y = t2 при t = 1, с точностью до двух знаков после запятой.
Вычислить значения частных производных функции z = z(x,y) , заданной неявно: x2+y2+z2 = y-z+3, в данной точке M0 (1,2,0) с точностью до двух знаков после запятой.
Проверить, удовлетворяет ли данная функция u = ex(xcosy-ysiny) указанному уравнению .
Найти уравнения касательной плоскости и нормали к заданной поверхности s в точке m0 (x0,y0,z0). Поверхность, заданную в пункте б), изобразить на чертеже.
а) S: x2+y2-xz+yz-3x = 11, M0(1,4,-1);
б) S: x2+y2-4x+2y+4 = 0, M0(2,-2,0).
По какому направлению должна двигаться т. М(x,y,z) при переходе через т. M0(-1,1,-1) ,чтобы функция
возрастала с наибольшей скоростью?
Исследовать на экстремум функцию z = x3 + 8y3-6xy +1.
Найти наибольшее и наименьшее значения функции z = x2 y (4-x-y) в области
D: y = 6-x, y = 0, x = 0.