
- •8 Взаимодействие процессов 79
- •9 Синхронизация процессов 87
- •10 Тупиковые ситуации 101
- •11 Управление памятью 114
- •12 Управление виртуальной памятью 132
- •13 Интерфейс файловой системы 138
- •14 Некоторые аспекты Реализации файловой системы 156
- •Литература 166 введение
- •Понятие операционной системы
- •Контрольные вопросы
- •Организация компьютерной системы
- •Архитектура компьютера с общей шиной
- •Структура памяти
- •Структура ввода-вывода
- •Контрольные вопросы
- •Классификация Операционных Систем
- •Поддержка многопользовательского режима.
- •Поддержка многопоточности
- •Многопроцессорная обработка
- •Особенности областей использования
- •Контрольные вопросы
- •Функциональные компоненты операционной системы
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Безопасность и защита данных
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Контрольные вопросы
- •Структура операционной системы
- •Монолитные системы
- •Многоуровневые системы
- •Виртуальные машины
- •Экзоядро
- •Модель клиент-сервер
- •Контрольные вопросы
- •Процессы и потоки
- •Концепция процесса
- •Состояния процесса
- •Реализация процессов
- •Операции над процессами
- •1Создание процессов
- •2Завершение процессов
- •Контрольные вопросы
- •Планирование процессора
- •Планирование процессов. Очереди
- •Планировщики
- •Моменты перепланировки. Вытеснение
- •Переключение контекста
- •Диспетчеризация
- •Критерии планирования процессора
- •Стратегии планирования процессора
- •3Планирование в порядке поступления
- •Пример.
- •4Стратегия sjf
- •5Приоритетное планирование
- •6Карусельная стратегия планирования
- •7Очереди с обратной связью
- •8Гарантированное планирование
- •9Лотерейное планирование
- •10Планирование в системах реального времени
- •Планирование потоков
- •Оценка алгоритмов планирования
- •11Детерминированное моделирование
- •12Моделирование очередей
- •13Имитация
- •Контрольные вопросы
- •Взаимодействие процессов
- •Разделяемая память. Проблема производителя и потребителя
- •Взаимодействие путем передачи сообщений
- •14Буферизация
- •15Исключительные ситуации
- •Потерянные сообщения
- •Вызов удаленных процедур (rpc)
- •Контрольные вопросы
- •Синхронизация процессов
- •Взаимное исключение и критические участки
- •Синхронизация с помощью элементарных приемов нижнего уровня
- •16Запрещение прерываний
- •17Переменные блокировки
- •18Операция проверки и установки
- •Семафоры
- •19Использование семафоров
- •20Реализация семафоров
- •21Тупики и зависания
- •Классические проблемы синхронизации
- •22Проблема ограниченного буфера
- •23Проблема читателей и писателей
- •24Задача об обедающих философах
- •Двоичные семафоры
- •Сигналы
- •Контрольные вопросы
- •Тупиковые ситуации
- •Необходимые условия возникновения тупиков
- •Граф выделения и закрепления ресурсов
- •Методы решения проблемы тупиков
- •25Предотвращение тупиков
- •Взаимное исключение
- •Захват и ожидание
- •Отсутствие перераспределения
- •Условие кругового ожидания
- •26Обход тупиков
- •27Простейший алгоритм обхода тупика
- •28Алгоритм банкира
- •29Обнаружение тупиков
- •30Восстановление после тупика
- •Контрольные вопросы
- •Управление памятью
- •Функции операционной системы по управлению памятью
- •Типы адресов
- •Физическое и логическое адресное пространство
- •Связывание адресов
- •Динамическая загрузка
- •Динамическое связывание
- •Перекрытие программ в памяти
- •Свопинг
- •Смежное размещение процессов
- •31Простое непрерывное распределение
- •32Распределение с несколькими непрерывными разделами
- •Фрагментация
- •Страничная организация памяти
- •Сегментная организация памяти
- •Защита и совместное использование
- •Фрагментация
- •Сегментация в сочетании со страничной памятью
- •Контрольные вопросы
- •Управление виртуальной памятью
- •Подкачка страниц
- •Алгоритмы вытеснения страниц
- •33Случайный выбор (Random)
- •34«Первым пришел первым ушел» (fifo)
- •35Вытеснение по давности использования (lru)
- •36Вытеснение редко используемых страниц (lfu)
- •37Оптимальный алгоритм (opt)
- •Аномалии в алгоритмах страничной реализации
- •38«Толкотня» в памяти
- •39Аномалия Биледи
- •Эффективность и применимость виртуальной памяти
- •Пример.
- •Контрольные вопросы
- •Интерфейс файловой системы
- •Понятие файла. Атрибуты файла и операции с файлами
- •Операции над файлами
- •Типы файлов
- •Структура файлов
- •Методы доступа
- •40Последовательный метод доступа
- •41 Прямой метод доступа
- •42Другие методы доступа
- •Каталоги
- •Логическая структура каталога
- •43Одноуровневая структура каталога
- •44Двухуровневая структура каталога
- •45 Древовидная структура каталога
- •46Организация каталога в виде графа без циклов
- •47Организация каталога в виде произвольного (простого) графа
- •Проблемы защиты файлов
- •48Типы доступа
- •49Списки прав доступа
- •50Другие подходы к защите
- •Контрольные вопросы
- •Некоторые аспекты Реализации файловой системы
- •Общая структура файловой системы
- •Методы выделения дискового пространства
- •51Выделение непрерывной последовательностью блоков
- •52Связный список
- •53Таблица отображения файлов
- •54Индексные узлы
- •Управление свободным и занятым дисковым пространством
- •55Учет при помощи организации битового вектора
- •56Учет при помощи организации связного списка
- •57Размер блока
- •58Структура файловой системы на диске
- •Контрольные вопросы Литература
Отсутствие перераспределения
Использование второго стратегического принципа Хавендера также исключает и возникновение условия неперераспределяемости. Как мы уже говорили, у такого подхода имеются серьезные недостатки.
В качестве альтернативы можно позволить операционной системе отнимать у процессов ресурсы. Это выполнимо, если можно запомнить состояние процесса для его последующего восстановления. Если процесс запрашивает ресурсы, то сначала проверяется, доступны ли они. Если нет, то проверяется, есть ли в системе ожидающие процессы, которым выделены запрашиваемые ресурсы. Если нет, то процесс переходит в состояние ожидания. В противном случае, у ожидающих процессов отбираются необходимые ресурсы и выделяются данному процессу.
Процесс может быть возобновлен при наличии всех ресурсов.
Эти протоколы обычно применяются только к ресурсам, состояние которых может быть легко сохранено и восстановлено (регистры, память).
Условие кругового ожидания
Условие кругового ожидания можно исключить, предотвращая образование цепи. Это обеспечивается иерархическим выделением ресурсов (третий стратегический принцип Хавендера). Все ресурсы образуют некоторую иерархию. Процесс, затребовавший ресурс на одном уровне, может затем потребовать ресурсы только на более высоком уровне. Он может освободить ресурсы на данном уровне только после освобождения всех ресурсов на всех более высоких уровнях. После того как процесс получил, а потом освободил ресурсы данного уровня, он может снова запросить ресурсы на том же самом уровне. Предварительное выделение ресурсов можно считать специальным случаем иерархического выделения, имеющего единственный уровень. Иерархическое выделение несколько дороже, но оно может снизить потери, связанные с полным предварительным выделением. Однако этот метод не дает никакого выигрыша, если порядок, в котором процессам необходимы ресурсы, отличается от порядка уровней в иерархии.
В целом методы предотвращения тупиков сводятся к введению ряда условий, ограничивающих свободу выставления запросов. Это приводит к снижению загруженности ресурсов и пропускной способности системы.
26Обход тупиков
Если ни одно из четырех условий возникновения тупика не исключено, тем не менее, можно предупредить тупиковую ситуацию, если у системы есть информация о последовательности запросов, связанных с каждым из параллельных процессов.
Методы обхода тупиков (deadlock avoidance), предполагают, что допускается возникновение каждого из необходимых условий возникновения тупика, однако прогнозируют появления тупика и не допускают его появления.
Будем считать, что операционная система находится в безопасном состоянии (safe state), если никакой процесс не может отобразить это состояние в тупиковое. В противном случае будем называть состояние системы опасным (unsafe state). Обход тупиков можно рассматривать как запрет входа в опасное состояние.
Можно доказать, что если система находится в любом безопасном состоянии, то существует, по крайней мере, одна последовательность запросов, которая обходит опасное состояние. Следовательно, достаточно проверить, не приведет ли выделение затребованного ресурса сразу же к опасному состоянию. Если да, то процесс отклоняется. Если нет, то его можно выполнить. Проверка того, является ли состояние опасным, требует анализа последующих запросов процессов.