
- •8 Взаимодействие процессов 79
- •9 Синхронизация процессов 87
- •10 Тупиковые ситуации 101
- •11 Управление памятью 114
- •12 Управление виртуальной памятью 132
- •13 Интерфейс файловой системы 138
- •14 Некоторые аспекты Реализации файловой системы 156
- •Литература 166 введение
- •Понятие операционной системы
- •Контрольные вопросы
- •Организация компьютерной системы
- •Архитектура компьютера с общей шиной
- •Структура памяти
- •Структура ввода-вывода
- •Контрольные вопросы
- •Классификация Операционных Систем
- •Поддержка многопользовательского режима.
- •Поддержка многопоточности
- •Многопроцессорная обработка
- •Особенности областей использования
- •Контрольные вопросы
- •Функциональные компоненты операционной системы
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Безопасность и защита данных
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Контрольные вопросы
- •Структура операционной системы
- •Монолитные системы
- •Многоуровневые системы
- •Виртуальные машины
- •Экзоядро
- •Модель клиент-сервер
- •Контрольные вопросы
- •Процессы и потоки
- •Концепция процесса
- •Состояния процесса
- •Реализация процессов
- •Операции над процессами
- •1Создание процессов
- •2Завершение процессов
- •Контрольные вопросы
- •Планирование процессора
- •Планирование процессов. Очереди
- •Планировщики
- •Моменты перепланировки. Вытеснение
- •Переключение контекста
- •Диспетчеризация
- •Критерии планирования процессора
- •Стратегии планирования процессора
- •3Планирование в порядке поступления
- •Пример.
- •4Стратегия sjf
- •5Приоритетное планирование
- •6Карусельная стратегия планирования
- •7Очереди с обратной связью
- •8Гарантированное планирование
- •9Лотерейное планирование
- •10Планирование в системах реального времени
- •Планирование потоков
- •Оценка алгоритмов планирования
- •11Детерминированное моделирование
- •12Моделирование очередей
- •13Имитация
- •Контрольные вопросы
- •Взаимодействие процессов
- •Разделяемая память. Проблема производителя и потребителя
- •Взаимодействие путем передачи сообщений
- •14Буферизация
- •15Исключительные ситуации
- •Потерянные сообщения
- •Вызов удаленных процедур (rpc)
- •Контрольные вопросы
- •Синхронизация процессов
- •Взаимное исключение и критические участки
- •Синхронизация с помощью элементарных приемов нижнего уровня
- •16Запрещение прерываний
- •17Переменные блокировки
- •18Операция проверки и установки
- •Семафоры
- •19Использование семафоров
- •20Реализация семафоров
- •21Тупики и зависания
- •Классические проблемы синхронизации
- •22Проблема ограниченного буфера
- •23Проблема читателей и писателей
- •24Задача об обедающих философах
- •Двоичные семафоры
- •Сигналы
- •Контрольные вопросы
- •Тупиковые ситуации
- •Необходимые условия возникновения тупиков
- •Граф выделения и закрепления ресурсов
- •Методы решения проблемы тупиков
- •25Предотвращение тупиков
- •Взаимное исключение
- •Захват и ожидание
- •Отсутствие перераспределения
- •Условие кругового ожидания
- •26Обход тупиков
- •27Простейший алгоритм обхода тупика
- •28Алгоритм банкира
- •29Обнаружение тупиков
- •30Восстановление после тупика
- •Контрольные вопросы
- •Управление памятью
- •Функции операционной системы по управлению памятью
- •Типы адресов
- •Физическое и логическое адресное пространство
- •Связывание адресов
- •Динамическая загрузка
- •Динамическое связывание
- •Перекрытие программ в памяти
- •Свопинг
- •Смежное размещение процессов
- •31Простое непрерывное распределение
- •32Распределение с несколькими непрерывными разделами
- •Фрагментация
- •Страничная организация памяти
- •Сегментная организация памяти
- •Защита и совместное использование
- •Фрагментация
- •Сегментация в сочетании со страничной памятью
- •Контрольные вопросы
- •Управление виртуальной памятью
- •Подкачка страниц
- •Алгоритмы вытеснения страниц
- •33Случайный выбор (Random)
- •34«Первым пришел первым ушел» (fifo)
- •35Вытеснение по давности использования (lru)
- •36Вытеснение редко используемых страниц (lfu)
- •37Оптимальный алгоритм (opt)
- •Аномалии в алгоритмах страничной реализации
- •38«Толкотня» в памяти
- •39Аномалия Биледи
- •Эффективность и применимость виртуальной памяти
- •Пример.
- •Контрольные вопросы
- •Интерфейс файловой системы
- •Понятие файла. Атрибуты файла и операции с файлами
- •Операции над файлами
- •Типы файлов
- •Структура файлов
- •Методы доступа
- •40Последовательный метод доступа
- •41 Прямой метод доступа
- •42Другие методы доступа
- •Каталоги
- •Логическая структура каталога
- •43Одноуровневая структура каталога
- •44Двухуровневая структура каталога
- •45 Древовидная структура каталога
- •46Организация каталога в виде графа без циклов
- •47Организация каталога в виде произвольного (простого) графа
- •Проблемы защиты файлов
- •48Типы доступа
- •49Списки прав доступа
- •50Другие подходы к защите
- •Контрольные вопросы
- •Некоторые аспекты Реализации файловой системы
- •Общая структура файловой системы
- •Методы выделения дискового пространства
- •51Выделение непрерывной последовательностью блоков
- •52Связный список
- •53Таблица отображения файлов
- •54Индексные узлы
- •Управление свободным и занятым дисковым пространством
- •55Учет при помощи организации битового вектора
- •56Учет при помощи организации связного списка
- •57Размер блока
- •58Структура файловой системы на диске
- •Контрольные вопросы Литература
17Переменные блокировки
Теперь попробуем найти программное решение. Рассмотрим одну совместно используемую переменную блокировки, изначально равную 0. Если процесс хочет попасть в критический участок, он предварительно считывает значение переменной блокировки. Если переменная равна 0, то процесс изменяет ее на 1 и входит в критический участок. Если же переменная равна 1, то процесс ждет, пока ее значение сменится на 0.
18Операция проверки и установки
Многие компьютеры имеют аппаратные операции, которые позволяют проверять и устанавливать содержимое слова (операция Test and Set Lock). Логику работы этой операции можно описать следующим образом:
function Test_and_Set(var target:Boolean):Boolean;
begin
Test_and_Set := target;
target := true;
end;
Главная отличительная особенность этой команды ее выполнение не может быть прервано. Если предпринимается попытка одновременного выполнения двух таких команды (на разных процессорах), то они будут выполнены последовательно, в порядке, определяемом аппаратурой. Такой прием называется блокировкой памяти.
Если
наша компьютерная система поддерживает
такую команду, то мы можем организовать
взаимное исключение, объявив переменную
lock
с начальным значением false.
Пусть у нас имеется n
процессов. Тогда структура процесса
может быть следующей:
repeat
. . .
while Test_and_Set(lock) do
no-op;
критический участок
lock := false;
. . .
until false;
Этот алгоритм, однако, не удовлетворяет условию ограниченного ожидания.
Рассмотрим
теперь алгоритм для синхронизации n
процессов
,
удовлетворяющий этому требованию.
Процессы должны использовать следующие
структуры данных:
var waiting: array[0..n-1] of Boolean;
lock: Boolean;
Все они проинициализированы значением false.
Тогда структура процесса будет следующей:
var j: 0..n-1;
key: Boolean;
. . .
repeat
waiting[i] := true;
key := true;
while waiting[i] and key do
key := Test_and_Set(lock);
waiting[i] := false;
критический участок
j := (j + 1) mod n;
while (j <> i) and not waiting[j] do
j := (j + 1) mod n;
if i = j then
lock := false;
else
waiting[i] := false;
. . .
until false;
Процесс может войти в критический участок, если значение waiting[i] или key ложно. Переменная key получит значение false только если операция Test_and_Set выполнена. Процесс, первым выполнивший эту операцию, найдет это значение, равным false и войдет в критический участок, остальные процессы должны ждать. Переменная waiting[i] получит значение false только, когда другой процесс выйдет из критического участка, и только это обеспечивает требование взаимного исключения. Ограниченное ожидание обеспечивается за счет циклического просмотра, а освобождение критического участка – установкой значения переменной lock в false.
Семафоры
Традиционное решение того, как обеспечить взаимно исключающий доступ к общим ресурсам, состоит в использовании семафоров. Впервые семафоры были предложены Эдсгеном Дейкстрой для операционной системы THE.
Семафор – это переменная целого типа, которая, кроме начальной инициализации допускает только две простых операции: wait и signal.
Классическое определение этих операций:
wait(s): while s <= 0 do no-op;
s := S – 1;
Signal(s): s := S + 1;
Модификации значения семафора этими операциями выполняются неделимо. Пока один процесс модифицирует семафор, ни один другой процесс не имеет доступа к этому семафору. Кроме того, в случае wait(s) проверка значения семафора и его модификация также должны выполняться неделимо.
Такие семафоры называют счетными или считающими.