
- •8 Взаимодействие процессов 79
- •9 Синхронизация процессов 87
- •10 Тупиковые ситуации 101
- •11 Управление памятью 114
- •12 Управление виртуальной памятью 132
- •13 Интерфейс файловой системы 138
- •14 Некоторые аспекты Реализации файловой системы 156
- •Литература 166 введение
- •Понятие операционной системы
- •Контрольные вопросы
- •Организация компьютерной системы
- •Архитектура компьютера с общей шиной
- •Структура памяти
- •Структура ввода-вывода
- •Контрольные вопросы
- •Классификация Операционных Систем
- •Поддержка многопользовательского режима.
- •Поддержка многопоточности
- •Многопроцессорная обработка
- •Особенности областей использования
- •Контрольные вопросы
- •Функциональные компоненты операционной системы
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Безопасность и защита данных
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Контрольные вопросы
- •Структура операционной системы
- •Монолитные системы
- •Многоуровневые системы
- •Виртуальные машины
- •Экзоядро
- •Модель клиент-сервер
- •Контрольные вопросы
- •Процессы и потоки
- •Концепция процесса
- •Состояния процесса
- •Реализация процессов
- •Операции над процессами
- •1Создание процессов
- •2Завершение процессов
- •Контрольные вопросы
- •Планирование процессора
- •Планирование процессов. Очереди
- •Планировщики
- •Моменты перепланировки. Вытеснение
- •Переключение контекста
- •Диспетчеризация
- •Критерии планирования процессора
- •Стратегии планирования процессора
- •3Планирование в порядке поступления
- •Пример.
- •4Стратегия sjf
- •5Приоритетное планирование
- •6Карусельная стратегия планирования
- •7Очереди с обратной связью
- •8Гарантированное планирование
- •9Лотерейное планирование
- •10Планирование в системах реального времени
- •Планирование потоков
- •Оценка алгоритмов планирования
- •11Детерминированное моделирование
- •12Моделирование очередей
- •13Имитация
- •Контрольные вопросы
- •Взаимодействие процессов
- •Разделяемая память. Проблема производителя и потребителя
- •Взаимодействие путем передачи сообщений
- •14Буферизация
- •15Исключительные ситуации
- •Потерянные сообщения
- •Вызов удаленных процедур (rpc)
- •Контрольные вопросы
- •Синхронизация процессов
- •Взаимное исключение и критические участки
- •Синхронизация с помощью элементарных приемов нижнего уровня
- •16Запрещение прерываний
- •17Переменные блокировки
- •18Операция проверки и установки
- •Семафоры
- •19Использование семафоров
- •20Реализация семафоров
- •21Тупики и зависания
- •Классические проблемы синхронизации
- •22Проблема ограниченного буфера
- •23Проблема читателей и писателей
- •24Задача об обедающих философах
- •Двоичные семафоры
- •Сигналы
- •Контрольные вопросы
- •Тупиковые ситуации
- •Необходимые условия возникновения тупиков
- •Граф выделения и закрепления ресурсов
- •Методы решения проблемы тупиков
- •25Предотвращение тупиков
- •Взаимное исключение
- •Захват и ожидание
- •Отсутствие перераспределения
- •Условие кругового ожидания
- •26Обход тупиков
- •27Простейший алгоритм обхода тупика
- •28Алгоритм банкира
- •29Обнаружение тупиков
- •30Восстановление после тупика
- •Контрольные вопросы
- •Управление памятью
- •Функции операционной системы по управлению памятью
- •Типы адресов
- •Физическое и логическое адресное пространство
- •Связывание адресов
- •Динамическая загрузка
- •Динамическое связывание
- •Перекрытие программ в памяти
- •Свопинг
- •Смежное размещение процессов
- •31Простое непрерывное распределение
- •32Распределение с несколькими непрерывными разделами
- •Фрагментация
- •Страничная организация памяти
- •Сегментная организация памяти
- •Защита и совместное использование
- •Фрагментация
- •Сегментация в сочетании со страничной памятью
- •Контрольные вопросы
- •Управление виртуальной памятью
- •Подкачка страниц
- •Алгоритмы вытеснения страниц
- •33Случайный выбор (Random)
- •34«Первым пришел первым ушел» (fifo)
- •35Вытеснение по давности использования (lru)
- •36Вытеснение редко используемых страниц (lfu)
- •37Оптимальный алгоритм (opt)
- •Аномалии в алгоритмах страничной реализации
- •38«Толкотня» в памяти
- •39Аномалия Биледи
- •Эффективность и применимость виртуальной памяти
- •Пример.
- •Контрольные вопросы
- •Интерфейс файловой системы
- •Понятие файла. Атрибуты файла и операции с файлами
- •Операции над файлами
- •Типы файлов
- •Структура файлов
- •Методы доступа
- •40Последовательный метод доступа
- •41 Прямой метод доступа
- •42Другие методы доступа
- •Каталоги
- •Логическая структура каталога
- •43Одноуровневая структура каталога
- •44Двухуровневая структура каталога
- •45 Древовидная структура каталога
- •46Организация каталога в виде графа без циклов
- •47Организация каталога в виде произвольного (простого) графа
- •Проблемы защиты файлов
- •48Типы доступа
- •49Списки прав доступа
- •50Другие подходы к защите
- •Контрольные вопросы
- •Некоторые аспекты Реализации файловой системы
- •Общая структура файловой системы
- •Методы выделения дискового пространства
- •51Выделение непрерывной последовательностью блоков
- •52Связный список
- •53Таблица отображения файлов
- •54Индексные узлы
- •Управление свободным и занятым дисковым пространством
- •55Учет при помощи организации битового вектора
- •56Учет при помощи организации связного списка
- •57Размер блока
- •58Структура файловой системы на диске
- •Контрольные вопросы Литература
Взаимное исключение и критические участки
Несмотря на то, что физические и логические ресурсы можно использовать совместно, они обычно в каждый момент времени доступны только одному процессу. Ресурс, который допускает единовременное обслуживание только одного процесса, называется критическим ресурсом. Если несколько процессов хотят пользоваться совместно некоторым ресурсом, то им следует синхронизировать свои действия таким образом, чтобы этот ресурс всегда находился в распоряжении не более одного из них (один процесс пользуется ресурсом, остальные ожидают его освобождения). В этом случае говорят, что процессы используют ресурс в режиме взаимного исключения (mutual exclusion).
Внутри каждого процесса можно выделить места, в которых происходит обращение к критическим ресурсам – критические участки, интервалы или секции (critical sections). Во всех процессах, работающих с критическими ресурсами, должна быть определена критическая секция. Заметим, что в разных потоках критическая секция состоит в общем случае из разных последовательностей команд.
Критические участки должны быть взаимно исключаемыми во времени, то есть когда один процесс выполняет свой критический участок, ни один другой процесс не должен получить разрешение на выполнение своего критического по отношению к этому же ресурсу участка. Решение проблемы критических участков состоит в разработке протокола, который процессы могут использовать для взаимодействия. Каждый процесс должен запрашивать разрешение на вход в критический участок. Участок текста программы, содержащий этот запрос, называется входом в критический участок. По окончании выполнения критического участка процесс должен освободить ресурс. Соответствующий участок текста программы называется выходом из критического участка.
На критический участок, связанный с ресурсом, разделяемым несколькими процессами, накладываются три требования:
В любой момент времени только один процесс может находиться внутри критического по отношению к данному ресурсу участка (mutual exclusion).
Если нет процессов, находящихся в критическом участке, и есть процессы, ожидающие входа в критический участок, то при выборе процесса, который должен выполняться следующим, учитываются только эти процессы, и этот выбор не должен откладываться бесконечно (progress).
Должно существовать ограничение на интервал времени, прошедший от запроса на вход в критический участок до фактического разрешения входа (bounded waiting).
Критические участки могут вкладываться друг в друга, когда требуется одновременный доступ к нескольким ресурсам.
Синхронизация с помощью элементарных приемов нижнего уровня
16Запрещение прерываний
Большинство таких приемов тесно связано с использованием аппаратного оборудования. Самый простой и самый неэффективный способ обеспечения взаимного исключения состоит в том, что ОС позволяет потоку запрещать любые прерывания на время его нахождения в критическом участке и разрешать прерывания при выходе из критического участка. Однако этот способ практически не применяется, так как опасно доверять управление системой пользовательскому потоку – он может надолго занять процессор, а при крахе потока в критическом участке крах потерпит вся система, так как прерывания никогда не будут разрешены. Этот подход вообще неприменим для многопроцессорных систем, поскольку запрещение прерываний повлияет только на тот процессор, который выполнит запрет. Остальные процессы продолжат работу и сохранят доступ к неопределенным данным