
- •8 Взаимодействие процессов 79
- •9 Синхронизация процессов 87
- •10 Тупиковые ситуации 101
- •11 Управление памятью 114
- •12 Управление виртуальной памятью 132
- •13 Интерфейс файловой системы 138
- •14 Некоторые аспекты Реализации файловой системы 156
- •Литература 166 введение
- •Понятие операционной системы
- •Контрольные вопросы
- •Организация компьютерной системы
- •Архитектура компьютера с общей шиной
- •Структура памяти
- •Структура ввода-вывода
- •Контрольные вопросы
- •Классификация Операционных Систем
- •Поддержка многопользовательского режима.
- •Поддержка многопоточности
- •Многопроцессорная обработка
- •Особенности областей использования
- •Контрольные вопросы
- •Функциональные компоненты операционной системы
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Безопасность и защита данных
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Контрольные вопросы
- •Структура операционной системы
- •Монолитные системы
- •Многоуровневые системы
- •Виртуальные машины
- •Экзоядро
- •Модель клиент-сервер
- •Контрольные вопросы
- •Процессы и потоки
- •Концепция процесса
- •Состояния процесса
- •Реализация процессов
- •Операции над процессами
- •1Создание процессов
- •2Завершение процессов
- •Контрольные вопросы
- •Планирование процессора
- •Планирование процессов. Очереди
- •Планировщики
- •Моменты перепланировки. Вытеснение
- •Переключение контекста
- •Диспетчеризация
- •Критерии планирования процессора
- •Стратегии планирования процессора
- •3Планирование в порядке поступления
- •Пример.
- •4Стратегия sjf
- •5Приоритетное планирование
- •6Карусельная стратегия планирования
- •7Очереди с обратной связью
- •8Гарантированное планирование
- •9Лотерейное планирование
- •10Планирование в системах реального времени
- •Планирование потоков
- •Оценка алгоритмов планирования
- •11Детерминированное моделирование
- •12Моделирование очередей
- •13Имитация
- •Контрольные вопросы
- •Взаимодействие процессов
- •Разделяемая память. Проблема производителя и потребителя
- •Взаимодействие путем передачи сообщений
- •14Буферизация
- •15Исключительные ситуации
- •Потерянные сообщения
- •Вызов удаленных процедур (rpc)
- •Контрольные вопросы
- •Синхронизация процессов
- •Взаимное исключение и критические участки
- •Синхронизация с помощью элементарных приемов нижнего уровня
- •16Запрещение прерываний
- •17Переменные блокировки
- •18Операция проверки и установки
- •Семафоры
- •19Использование семафоров
- •20Реализация семафоров
- •21Тупики и зависания
- •Классические проблемы синхронизации
- •22Проблема ограниченного буфера
- •23Проблема читателей и писателей
- •24Задача об обедающих философах
- •Двоичные семафоры
- •Сигналы
- •Контрольные вопросы
- •Тупиковые ситуации
- •Необходимые условия возникновения тупиков
- •Граф выделения и закрепления ресурсов
- •Методы решения проблемы тупиков
- •25Предотвращение тупиков
- •Взаимное исключение
- •Захват и ожидание
- •Отсутствие перераспределения
- •Условие кругового ожидания
- •26Обход тупиков
- •27Простейший алгоритм обхода тупика
- •28Алгоритм банкира
- •29Обнаружение тупиков
- •30Восстановление после тупика
- •Контрольные вопросы
- •Управление памятью
- •Функции операционной системы по управлению памятью
- •Типы адресов
- •Физическое и логическое адресное пространство
- •Связывание адресов
- •Динамическая загрузка
- •Динамическое связывание
- •Перекрытие программ в памяти
- •Свопинг
- •Смежное размещение процессов
- •31Простое непрерывное распределение
- •32Распределение с несколькими непрерывными разделами
- •Фрагментация
- •Страничная организация памяти
- •Сегментная организация памяти
- •Защита и совместное использование
- •Фрагментация
- •Сегментация в сочетании со страничной памятью
- •Контрольные вопросы
- •Управление виртуальной памятью
- •Подкачка страниц
- •Алгоритмы вытеснения страниц
- •33Случайный выбор (Random)
- •34«Первым пришел первым ушел» (fifo)
- •35Вытеснение по давности использования (lru)
- •36Вытеснение редко используемых страниц (lfu)
- •37Оптимальный алгоритм (opt)
- •Аномалии в алгоритмах страничной реализации
- •38«Толкотня» в памяти
- •39Аномалия Биледи
- •Эффективность и применимость виртуальной памяти
- •Пример.
- •Контрольные вопросы
- •Интерфейс файловой системы
- •Понятие файла. Атрибуты файла и операции с файлами
- •Операции над файлами
- •Типы файлов
- •Структура файлов
- •Методы доступа
- •40Последовательный метод доступа
- •41 Прямой метод доступа
- •42Другие методы доступа
- •Каталоги
- •Логическая структура каталога
- •43Одноуровневая структура каталога
- •44Двухуровневая структура каталога
- •45 Древовидная структура каталога
- •46Организация каталога в виде графа без циклов
- •47Организация каталога в виде произвольного (простого) графа
- •Проблемы защиты файлов
- •48Типы доступа
- •49Списки прав доступа
- •50Другие подходы к защите
- •Контрольные вопросы
- •Некоторые аспекты Реализации файловой системы
- •Общая структура файловой системы
- •Методы выделения дискового пространства
- •51Выделение непрерывной последовательностью блоков
- •52Связный список
- •53Таблица отображения файлов
- •54Индексные узлы
- •Управление свободным и занятым дисковым пространством
- •55Учет при помощи организации битового вектора
- •56Учет при помощи организации связного списка
- •57Размер блока
- •58Структура файловой системы на диске
- •Контрольные вопросы Литература
6Карусельная стратегия планирования
Карусельная стратегия или «круговорот» (RR, Round – Robin) разработана специально для систем с разделением времени. В ее основе лежит концепция квантования. В соответствии с этой концепцией каждому процессу для выполнения выделяется непрерывный небольшой отрезок процессорного времени, называемый квантом времени (time quantum). Квант времени часто лежит в промежутке (10 – 100 мс). Очередь готовых процессов интерпретируется как кольцевая очередь. Процессы циклически перемещаются по очереди, получая процессор на время равное одному кванту. Новый процесс добавляется в «хвост» очереди. Если процесс не завершается в пределах выделенного ему кванта времени его работа принудительно прерывается и он перемещается в «хвост» очереди.
Пример
Р1 (24 мс)
Р2 (3 мс)
Р3 (3 мс)
В том случае если, временной квант равен 4 мс диаграмма Ганта соответствующая - стратегии имеет вид изображенной на рис. 7.6.
Р1 |
Р2 |
Р3 |
Р1 |
Р1 |
Р1 |
Р1 |
Р1 |
|
0 |
4 |
7 |
10 |
14 |
18 |
22 |
26 |
30 |
Рисунок 7.17 - Диаграмма Ганта для случая RR стратегии планирования
Первый процесс из очереди готовых процессов получает квант времени длиной в q секунд, а затем отправляется снова в конец очереди, если только он себя не заблокирует. Если в очереди имеется К процессов, то каждый процесс получает q секунд из каждых Kq секунд процессорного времени. Следовательно, каждый процесс как бы выполняется процессором, скорость которого равна 1//С скорости физического процессора. Поэтому длина очереди – это важный параметр, определяющий быстроту продвижения процессов.
Величина кванта q определяет, насколько равномерно распределено время процессора по коротким периодам. Если время q бесконечно, то метод круговорота сводится к стратегии FCFS. С уменьшением q улучшается обслуживание более коротких процессов. Когда q очень мало, все готовые процессы обслуживаются одинаково и время ожидания прямо пропорционально объему требуемых услуг.
Для квантов «разумной» величины можно пренебречь временем, необходимым для переключения процессора с одного процесса на другой. Если же q – величина того же порядка, что и время переключения, то задержка при переключении становится заметной. В самом деле, если время q слишком мало, то система может потратить на переключение процессов больше времени, чем на их выполнение.
Важен и тот фактор, что если установленное значение кванта больше среднего интервала работы процессора, переключение процессов будет происходить редко. Напротив, большинство процессов будут совершать блокирующую операцию прежде, чем истечет длительность кванта, вызывая переключение процессов. Устранение принудительных переключений процессов улучшает производительность системы, так как переключения процессов будут происходить только тогда, когда это логически необходимо, то есть когда процесс заблокировался и не может продолжать работу.
Вывод можно сформулировать следующим образом: слишком малый квант приведет к частому переключению процессов и небольшой эффективности, но слишком большой квант может привести к медленному реагированию на короткие интерактивные запросы. Значение кванта около 20-50 мс часто является разумным компромиссом.
Существует множество других разновидностей круговорота. По одному из правил, называемому круговоротом со смещением, каждому процессу предоставляется квант, величина которого зависит от внешнего приоритета процесса. Каждому процессу соответствует своя длина кванта, так что процесс продвигается со скоростью, пропорциональной его приоритету. Можно придумать аналогичные правила, основанные на других составляющих приоритета, таких, как распределение ресурсов, интенсивность ввода-вывода и ожидаемое время обслуживания.