
- •Вопрос 1 Качественные особенности живых организмов. Уровни организации живого.
- •Вопрос 2 Понятие о системе. Клетка, многоклеточный организм, живые системы.
- •Вопрос 3 Вирусы. Строение, состав, жизненные циклы.
- •Вопрос 4 Прокариот.
- •Вопрос 5 Основные структурные компоненты эукариот. Плазмалемма, цитоплазма, ядро. Органоиды, включения.
- •Вопрос 6 Строение биологических мембран. Хим состав, функция. Транспорт веществ: диффузия, осмос, активный транспорт.
- •Вопрос 7 Строение и функции ядра. Ядерная мембрана, кариоплазма, хроматин, ядрышко.
- •Вопрос 8 Хромосомы
- •Вопрос 9 Клеточный цикл
- •Вопрос 10 Размножение
- •Вопрос 11 Половое размножение.
- •Вопрос 12 Гаметогенез. Мейоз, его значение.
- •Вопрос 13 Особенности овогенеза у человека
- •Вопрос 14 Генетический материал клетки. Днк, рнк, их роль в передачи наследственной информации
- •Вопрос 15 Строени и функции днк, ее свойства, матричные синтезы
- •Вопрос 16 рнк, строение, функции, типы, значение.
- •Вопрос 17 Реализация ген материала
- •Вопрос 18 Гены
- •Вопрос 19 Белки
- •Вопрос 20 Онтогенез
- •Вопрос 21 Типы яиц и дробления
- •Вопрос 22 Типы гаструляций
- •Вопрос 23 Способы образования мезодермы
- •Вопрос 26 Мезенхима
- •Вопрос 27 производные зародышевых листков
- •Вопрос 28 Провизорные органы
Вопрос 16 рнк, строение, функции, типы, значение.
ТРАНСКРИПЦИЯ, биосинтез молекул рибонуклеиновых кислот (РНК) на соответствующих участках молекул дезоксирибонуклеиновой кислоты (ДНК); первый этап в действии гена по реализации генетической информации. Для синтеза РНК используется одна, т. н. смысловая цепь из двуцепочечной молекулы ДНК. Матричный синтез РНК (т. е. синтез с использованием матрицы, шаблона, в данном случае – ДНК) осуществляет фермент РНК-полимераза. Этот фермент «узнаёт» на ДНК стартовый участок (участок начала транскрипции), присоединяется к нему, расплетает двойную цепь ДНК и начинает синтез одноцепочечной РНК. К смысловой цепи ДНК подходят нуклеотиды, присоединяются к ней по принципу соответствия (комплементарности), а затем передвигающийся по ДНК фермент сшивает их в полинуклеотидную цепь РНК.
Существуют три типа РНК, каждый из которых выполняет свою особую роль в синтезе белка.
1. Матричная РНК представляет собой длинную одноцепочечную молекулу, присутствующую в цитоплазме. Эта молекула РНК содержит от нескольких сотен до нескольких тысяч нуклео-тидов РНК, образующих кодоны, строго комплементарные триплетам ДНК, и переносит генетический код из ядра в цитоплазму, определяя таким образом синтез разнообразных белков.
2. Транспортная РНК переносит активированные аминокислоты к рибосомам для синтеза полипептидных молекул. Она играет важнейшую роль в синтезе белка, поскольку она транспортирует аминокислоты к строящейся молекуле белка. Каждая транспортная РНК специфически связывается только с одной из 20 аминокислот, составляющих белковые молекулы. Транспортные РНК действуют как переносчики специфических аминокислот, доставляя их к рибосомам, на которых происходит сборка полипептидных молекул. Каждая специфическая транспортная РНК распознает «свой» кодон матричной РНК, прикрепившейся к рибосоме, и доставляет соответствующую аминокислоту на соответствующую позицию в синтезируемой полипептидной цепи.
3. Рибосомная РНК в комплексе примерно с 75 разными белками формирует рибосомы — клеточные органеллы, на которых происходит сборка полипептидных молекул.
Вопрос 17 Реализация ген материала
Реализация ген информации происходит по схеме ДНК-предРНК(транскрипция)-(процессинг)РНК-(трансляция)Белок Транскрипция – процесс перевода ген информации со смысловой цепи ДНК на РНКЮ процесс синтеза всех типов РНК на матрице ДНК.
Реализация генетической информации в живых клетках (синтез белка) осуществляется благодаря транскрипции и трансляции. Нуклеотидная последовательность ДНК копируется с образованием мРНК. Последняя выходит в цитоплазму и прикрепляется к рибосомам, где ее нуклеотидная последовательность транслируется в последовательность аминокислот, составляющих белок. Таким образом, последовательность аминокислот в полипептидной цепи определяется последовательностью нуклеотидов в ДНК.
Выпадение или замена хотя бы одного нуклеотида приводит к существенным изменениям структуры и функции кодируемого белка. Открытие механизма реализации наследственной информации было одним из самых значительных научных событий XX века.
Кроме участков, кодирующих последовательность аминокислот в белке (экзоны), каждый ген содержит и некодирующие участки, часть из которых регулирует синтез РНК. При созревании мРНК некодирующие участки (интроны) вырезаются и в дальнейшем не транслируются. Экзоны соединяются в молекулу транслируемой мРНК. Этот процесс получил название сплайсинга.
Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом
Свойства
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[11]
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.