Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lab6_stochTheory.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
477.18 Кб
Скачать

Кривая качества

Важно понимать, что в любой задаче есть принципиальные (фундаментальные) ограничения, которые определяются особенностями системы и не могут быть преодолены никаким регулятором. Например, ясно, что задачу «обеспечить рыскание судна не более 1 при волнении 8 баллов» в реальной ситуации решить нельзя.

Пусть известны все характеристики системы и возмущений. За счет чего можно уменьшить ошибку стабилизации? Как правило, только за счет увеличения мощности управления, которая ограничена1. Поэтому для уменьшения ошибки нужно увеличивать управляющий сигнал.

С другой стороны, активность руля тоже нужно всячески уменьшать, потому что механические части быстро изнашиваются и приходят в негодность. Кроме того, на управление затрачивается дополнительная энергия.

Таким образом, мы пришли к задаче многоцелевой оптимизации – хочется одновременно обеспечить минимум ошибки и минимум мощности управления. Как мы видели, эти две цели противоречивы. В таком случае чаще всего составляется единый критерий качества, который включает все величины, которые нужно минимизировать, с различными весовыми коэффициентами. Например, в задаче стабилизации судна при случайных возмущениях он выглядит так:

.

(7)

Здесь и – дисперсии ошибки и сигнала управления, а – неотрицательный весовой коэффициент.

П редположим, что мы нашли оптимальный регулятор , который минимизирует этот критерий при некотором фиксированном коэффициенте . Можно ли выбором какого-то другого регулятора одновременно уменьшить и дисперсию ошибки , и дисперсию управления ? Если предположить, что можно, получается, что регулятор дает меньшее значение критерия качества (при том же ), чем , то есть, – это не оптимальный регулятор и мы пришли к противоречию. Таким образом, для полученной оптимальной системы нельзя одновременно уменьшить и дисперсию ошибки , и дисперсию управления . Такие регуляторы называются Парето-оптимальными2.

Для каждого коэффициента будут свои значения и , так что можно построить график зависимости от в оптимальных системах. Отметим, что чаще всего удобнее вместо дисперсий использовать соответствующие среднеквадратические отклонения – и . Этот график показывает, какая мощность управления требуется, чтобы обеспечить заданную точность стабилизации. И наоборот, по графику можно определить, какую точность можно обеспечить, имея заданную мощность управления. В этом смысле можно называть эту кривую кривой качества системы.

Каждая точка этой кривой соответствует какому-то Парето-оптимальному регулятору. Поскольку для таких регуляторов нельзя одновременно уменьшить оба показателя качества, выпуклость кривой всегда направлена в сторону начала координат. Серая область недостижима, то есть, ни один регулятор в такой системе не может обеспечить соответствующее качество.

1 Например, угол перекладки руля судна чаще всего не может быть более 30-35 (при больших углах руль становится неэффективен).

2 В честь итальянского экономиста В. Парето, который сформулировал этот принцип.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]