
- •Предмет генетики и его место в системе биологических наук. Понятие о наследственности и изменчивости. Методы генетики.
- •10. Типы рнк в клетке, особенности их стороения.
- •18. Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Доминантность и рецессивност. Кодоминантность. Аллельное состояние гена.
- •22.Значение работ Менделя для дальнейшего развития генетики и научно обоснованной теории селекции. Условия осуществления менделевских закономерностей.
- •Вопрос 62
- •Вопрос 70
18. Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Доминантность и рецессивност. Кодоминантность. Аллельное состояние гена.
Моногибридное скрещивание рассмотрим на примере красноцветкового гороха с белоцветковым. Во время мейоза у гибридного растения F1 материнские хромосомы несущие доминантный ген, и отцовский хромосом несущий рецессивный ген расходятся в дочерней клетке независимо др. от др., и поэтому при случайном соединении гамет во время оплодотворения образуется три типа зигот. Красноцветковые растения F2 одинаковы по фенотипу, но различны по генотипу. Организмы содержащие в соматических клетках 2 доминантных или 2 рецессивных гена данной аллельной пары называються гомозиготными, а организмы содержащие разные гены данной аллельной пары – гетерозиготными. Гомозиготные особи при размножении не дают расщепление, а гетерозиготные продолжают расщепляться. Правило единообразия гибридов первого поколения. При опылении красноцветкового гороха пыльцой, взятой с растений с белыми цветками, все гибриды первого поколения имели красную окраску цветков Такие же результаты были получены при обратном скрещивании, когда белоцветковые растения опылялись пыльцой красноцветковых. Следовательно, все гибридные растения первого поколения имели одинаковую красную окраску цветков, т. е. были по этому признаку единообразны. Единообразие гибридов первого поколения наблюдалось Г. Менделем во всех скрещиваниях, которые он проводил. Это дало ему основание сформулировать одну из основных закономерностей наследования — правило единообразия гибридов первого поколения. Явление доминирования. В примере, взятом из опытов. Г. Менделя по скрещиванию растений гороха с разноокрашенными цветками, признаки красной и белой окраски, составляющие одну пару, проявлялись у потомства по-разному. Красная окраска цветков у гибридов неизменно сохранялась, белая подавлялась и не обнаруживалась. Признак, проявляющийся у гибридов первого поколения, в данном случае красная окраска цветков, Г. Мендель назвал доминантным (от лат. dominans — господствующий, подавляющий), а не проявляющийся, в данном опыте белая окраска цветков,— рецессивным (от лат. recessus — отступающий, подавляемый). Подавление у гибридных организмов одних признаков другими получило в генетике название доминирования. В потомстве могут одновременно проявляться признаки обоих родителей. Этот тип наследования получил название кодоминирования. Его примером может служить наследование групп крови у человека. Если один из родителей имеет группу крови А, а другой Б, то в крови детей присутствуют антигены характерные как для группы А так и для группы Б. Гены одной пары признаков находятся в одинаковых точках гомологичных хромосом. Такие гены получили название аллельных. Понятие аллельности — одно из важнейших. В генетике оно имеет такое же значение, как понятие валентности в химии. Явления наследственности могут быть поняты и объяснены только на основании представления об аллельности дискретных наследственных единиц (генов). Материальной основой распределения аллельных генов при образовании гамет является процесс мейоза.
19 Закон Чистоты гамет. Закон рсщепления гибридов.Решотка Пенетта. Гомозиготность, гетерозиготность. Понятие о генотипе и фенотипе.Виды скрещиваний. Для объяснения сущности явлений единообразия гибридов первого поколения и расщепления признаков у гибридов второго поколения Г. Мендель предложил гипотезу чистоты гамет, по которой развитие любого признака организма определяется соответствующим ему наследственным фактором Так, признак красной окраски цветков обусловливается доминантным фактором, а признак белой окраски — рецессивным.Гибридные растения первого поколения развиваются в результате слияния гамет с доминантным геном А от красноцветковой родительской формы и с рецессивным геном а от белоцветковой. Поэтому они одновременно имеют и ген красной и ген белой окраски цветков. Так как ген красной окраски доминирует над геном белой, то все гибриды первого поколения оказываются красноцвет-ковыми. Гибриды первого поколения, однородные с красноцветковыми по фенотипу (внешнему виду, видимым признакам), в своем генотипе (наследственной основе) несут гены, обусловливающие развитие разнородных по окраске цветков — красных и белых. Все семена гибридов первого поколения Г. Мендель собирал и высевал для размножения. В выращенном из них втором гибридном поколении уже не наблюдалось единообразия: часть растений имела один часть —другой признак данной пары. Так, растения второго поколения, выращенные из красноцветковых гибридов первого поколения, имели как красные, так и белые цветки. Закономерность в распределении доминантных и рецессивных признаков у гибридов второго поколения в кратном отношении 3: 1 Г. Мендель назвал правилом расщепления. Организмы, содержащие в соматических клетках два доминантных или два рецессивных гена данной аллельной пары (АА или аа), называются гомо зиготными, а организмы, содержащие разные гены данной аллельной пары, гетерозиготными. Гомозиготные особи при размножении не дают расщепления в последующих поколениях, гетерозиготные формы продолжают расщепляться. Взаимными, или реципрокными называют скрещивания между двумя родительскими формами АА и аа, в одной из которых АА является материнской формой, а в другой—-отцовской. Формула реципрокных скрещиваний: АА х аа и аа Х АА. Анализирующими называют такие скрещивания, когда какое-либо растение гибридного поколения скрещивают с рецессивной гомозиготной по этому же гену исходной родительской формой. Проводя дигибридное скрещивание гороха, Г. Мендель установил еще одну важную закономерность наследования, получившую название независимого комбинирования генов. Он скрещивал горох, имеющий желтые круглые семена, с горохом, у которого семена были зелеными и морщинистыми. Все гибридные растения первого поколения сохраняли единообразие: они имели желтые и круглые семена. Во втором поколении расщепление носило более сложный характер, чем при моногибридном скрещивании: из общего количества (556) полученных семян 315 были желтые круглые, 101 —желтые морщинистые, 108 — зеленые круглые и 32 — зеленые морщинистые. Эти цифры почти точно соответствуют кратному отношению 9:3:3:1. Сущность явлений при дигибридном скрещивании заключается в следующем.В зиготу, из которой развивается гибридное растение Ft, вно« сится четыре гена: желтой окраски (А) и округлой формы семяя (В) от одной родительской формы и зеленой окраски (а) и мор* щинистой формы семян (б) от другой. Такое растение будет дважды-, или дигетерозиютным. Все возможные сочетания указанных генов дадут у него четыре типа яйцеклеток и спермиев: АВ, АЬ, аВ и аЬ. Для расчета сочетаний разных типов гамет и определения результатов расщепления обычно пользуются так называемой решеткой, или таблицей, Пеннета. По вертикальной линии расчерченной в клетку таблицы наносят типы яйцеклеток, а по горизонтальной — типы спермиев. На пересечении линий, ведущих от обозначений обоих типов гамет, выписывают сначала гены одной аллельной пары, а затем другой. Так определяют генотипы и соответствующие им фенотипы гибридов при всех возможных сочетаниях яйцеклеток и спермиев.
20 Дигибридное и полигебридное скрещивание. Закон независимого наследования генов. Общие формулы для определения числа фенотипических и генотипических классов при расщеплении во 2 поколении. Проводя дигибридное скрещивание гороха, Г. Мендель установил еще одну важную закономерность наследования, получившую название независимого комбинирования генов. Он скрещивал горох, имеющий желтые круглые семена, с горохом, у которого семена были зелеными и морщинистыми. Все гибридные растения первого поколения сохраняли единообразие: они имели желтые и круглые семена. Во втором поколении расщепление носило более сложный характер, чем при моногибридном скрещивании: из общего количества (556) полученных семян 315 были желтые круглые, 101 —желтые морщинистые, 108 — зеленые круглые и 32 — зеленые морщинистые. Эти цифры почти точно соответствуют кратному отношению 9:3:3:1. Следует иметь в виду, что расщепление F2 при дигибридном скрещивании в отношении 9:3:3:1 наблюдается только при полном доминировании по обеим парам аллельных генов. При неполном доминировании или доминировании по одному признаку гетерозиготные особи будут отличаться от гомозиготных и число фенотипических классов в F2 увеличится. Так как при неполном доминировании распределение генов при образовании гамет. Хи-квадрат — сумма квадратов отклонений эмпирических частот от теоретических, отнесенная к теоретическим частотам. Его вычисляют по формуле: х2=∑d2/q . где d2 — квадрат отклонений наблюдаемой частоты каждого фенотипа от теоретически ожидаемой q; ∑— знак суммирования. Для нахождения величины хи-квадрат нужно:по каждому фенотипическому классу вычислить разницу между фактическими и вычисленными частотами р—q=d; возвести разницу в квадрат и отнести ее к вычисленным частотам для каждого класса; суммировать полученные отношения — для всех фенотипических классов. Если 2(р— q)=0, то х2 = 0. Это указывает на полное соответствие фактически полученных частот фенотипических классов теоретически ожидаемым. Если хи-квадрат не равен нулю, то оценка его значимости производится с помощью специальной таблицы. Полигибридные скрещивания. Скрещивания особей, различающихся по трем и более парам аллельных признаков, называются полигибридными. Они дают более сложную картину расщепления по сравнению с дигибридными скрещиваниями, но подчиняются тем же закономерностям наследования. Если скрестить растение гороха, имеющее круглые желтые семена и красные цветки, с растением, у которого морщинистые зеленые семена и белые цветки, то в Fi в соответствии с явлением доминирования все гибриды будут похожи на материнское растение, а в F2 произойдет сложное расщепление. Обозначим гены, определяющие форму семян, А—а, цвет семенной кожуры — В—Ь, окраску цветков — С—с. Тогда генотип одного растения будет иметь формулу ААВВСС, другого — ааЪЬсс, а генотип гибридов Fi— АаВЬСс. Эти гибридные растения образуют восемь типов гамет: ABC, АВс, АЪС, Abe, aBC, aBc, abC, abc.
21 Цитологические основы расщепления. Значение мейоза в осуществлении закона чистоты гамет и независимого наследования признака. Под расщеплением гибридов понимают закономерности распределения среди потомков F2 особей с доминантными и рецессивными признаками.Высевая семена, собранные с гибридных растений гороха первого поколения, Мендель получил в F2 растения с признаками обоих родителей. Следовательно, в отличие от первого поколения второе не было единообразным. Растений с доминантными признаками было приблизительно в три раза больше, чем с рецессивными. Причем эта закономерность наблюдалась по всем изучавшимся Менделем признакам. Высевая в дальнейшем семена, собранные с каждого из растений F2, Мендель обнаружил, что некоторые растения с доминантными признаками в F3 не расщеплялись и все их потомство было единообразным. Причем соотношение особей с доминантными и с рецессивными признаками, как и в F2, было 3:1. Гибридные растения F2 с рецессивными признаками во всех случаях давали нерасщепляющееся потомство. Соотношение растений с доминантным признаком, не давших расщепляющегося потомства, к растениям, давшим в /з расщепление, и к растениям с рецессивным признаком соответствовало 1:2:1. Мендель писал: «...теперь ясно, что гибриды по двум различающимся признакам образуют семена, из которых половина дает вновь гибридную форму, тогда как другая дает растения, которые остаются константными и в равных долях содержат доминирующий и рецессивный признаки»*.Таким образом, Мендель впервые показал, что внешний вид растения (фенотип**) не всегда отражает наследственные задатки (генотип). Изучая последующие гибридные поколения, Мендель показал, что от поколения к поколению число гибридных форм уменьшается, а число нерасщепляющихся особей возрастает. Искусственное получение гибридов путем гибридизации, а также факты их расщепления во втором и последующих поколениях позволили Менделю прийти к выводу, что подобные результаты могут быть объяснены только, если предположить, что половые гаметы (зачатковые и пыльцевые клетки по Менделю) несут постоянные и обособленные единицы наследственности — факторы, названные в 1909 г. В. Иогансёном генами. Было установлено, что гены, отвечающие за одну пару признаков, находятся в одинаковых точках (локусах) гомо логичных хромосом и что в результате мейоза гомологичные хромосомы расходятся в гаметы. А поскольку одна половая клетка содержит только одну из двух гомологичных хромовом, в нее попадает только один из пары генов. При скрещивании растений пшеницы с безостыми и с остистыми колосьями у растений F1 колосья безостые (генотип Gg). При самоопылении растений в яйцеклетки и спермин попадают уже гены G и g и, соединяясь в зиготе, дают генотипы 1GG: 2Gg: 1gg, из которых вырастут безостые и остистые растения пшеницы в соотношении (3 : 1). При образовании гамет у гибридов любая из них с равной вероятностью может получить ген G или g. При соединении же в зиготе гены не смешиваются и в дальнейшем такими же отдельностями передаются потомкам. Это правило получило название закона чистоты гамет.