Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цифровые фильтры для проектора_новый.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.73 Mб
Скачать

2. Цифровые фильтры

2.1. Свойства Z-преобразования

Прямым Z-преобразованием дискретной последовательности xn, где n=0,1,.., называется функция комплексной переменной z, определяемая следующим соотношением

.

Функция определена для тех значений z, при которых ряд сходится.

Пример:

Обратное Z – преобразование

Основные свойства прямого

Z-преобразования:

1.Линейность. Пусть последовательность yn представляет взвешенную сумму двух последовательностей x1n и x2n

,

где постоянные весовые коэффициенты.

Тогда Z-преобразование последовательности yn определяется следующим соотношением

.

Таким образом, Z-преобразование взвешенной суммы двух последовательностей равно взвешенной сумме Z-преобразований этих последовательностей.

2.Сдвиг последовательностей.

.

Последовательность yn представляет собой сдвинутую (задержанную) на m отсчетов последовательность xn

Тогда Z-преобразование Y(z) последовательности yn выражается через Z-преобразование X(z) последовательности xn следующим образом

.

Z-преобразование последовательности, сдвинутой относительно исходной на m отсчетов, равно Z-преобразованию исходной последовательности, умноженной на z m.

3.Дискретная свертка двух последовательностей. Дискретной сверткой двух последовательностей xn и hn называется последовательность yn, ,определяемая следующим соотношением

Z-преобразование Y(z) дискретной свертки двух последовательностей yn равно произведению Z-преобразований H(z) и X(z) исходных последовательностей hn и xn

,

где .

2.2. Импульсная характеристика цифрового фильтра. Понятие о рекурсивных и нерекурсивных цифровых фильтрах, БИХ- и КИХ-фильтрах

Цифровым фильтром называется линейная частотно-избирательная система, реализуемая на основе вычислительного устройства.

Пусть при действии на входе цифрового фильтра последовательности отсчетов xn на выходе действует последовательность yn .

Если n-ый отсчет выходного сигнала фильтра yn зависит только от отсчетов входного сигнала в данный и предшествующие моменты дискретного времени xn, xn-1 ..и т.д., то такой фильтр называется нерекурсивным.

Если n-ый отсчет выходного сигнала фильтра yn зависит не только от отсчетов входного сигнала в данный и предшествующие моменты дискретного времени xn, xn-1 ..и т.д., но и от отсчетов выходного сигнала в предшествующие моменты времени, то такой фильтр называется рекурсивным.

Импульсной характеристикой цифрового фильтра называется выходной сигнал фильтра при действии на его входе единичного отсчета и нулевых начальных условиях.

Фильтр с конечной импульсной характеристикой называется КИХ - фильтром (КИХ -конечная импульсная характеристика). Фильтр с бесконечной импульсной характеристикой называют БИХ - фильтром.

2.3. Определение выходного сигнала фильтра по входному сигналу и импульсной характеристике

Определение выходного сигнала цифрового фильтра по входному сигналу и импульсной характеристики основано на определении импульсной характеристики и принадлежности фильтра к линейным системам, для которых справедлив принцип суперпозиции.

Определение выходного сигнала фильтра по входному сигналу и импульсной характеристике

В выражении для y2 первое слагаемое равно нулю, т.к. x2 = 0, третье слагаемое равно нулю, т.к. h2=0.

В общем случае n – ый отсчет выходного сигнала определяется следующими соотношениями:

(2.6)

или

. (2.7)

Выходной сигнал фильтра представляет собой дискретную свертку входного сигнала и импульсной характеристики.

Нерекурсивный цифровой фильтр

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]