
- •Передмова
- •Конспект лекцій вступ до економетрії
- •Основні етапи економетричного аналізу
- •Економічні задачі, які розв’язують за допомогою економетричних методів
- •Математична модель
- •Рівняння лінійної регресії. Метод найменших квадратів
- •Використання нелінійних функцій у економетрії
- •Квадратична вирівнювальна функція
- •Лінеаризація
- •Тема 1. Однофакторна економетрична модель
- •1.1. Основні положення
- •1.2. Побудова та аналіз однофакторної економетричної моделі
- •Тema 2. Побудова загальної лінійної економетричної моделі
- •2.1. Основні положення
- •2.2. Загальна економетрична модель: побудова й аналіз
- •Економічні характеристики моделі
- •Тема 3. Дослідження загальної лінійної економетричної моделі
- •3.1. Багатофакторні економетричні моделі та їх специфікація
- •3.2. Метод найменших квадратів
- •3.3. Верифікація моделі
- •3.4. Прогнозування за лінійною моделлю
- •3.5. Методи побудови багатофакторної регресійної моделі
- •3.6. Етапи дослідження загальної лінійної моделі множинної регресії
- •Приклад параметризації та дослідження багатофакторної регресійної моделі
- •Контрольні запитання
- •Тема 4. Мультиколінеарність
- •4.1. Поняття про мультиколінеарність та її вплив на оцінку параметрів моделі
- •4.2. Тестування наявності мультиколінеарності
- •4.3. Алгоритм Фаррара–Глобера
- •4.4. Приклад дослідження наявності мультиколінеарності на основі алгоритму Фаррара–Глобера
- •4.5. Засоби усунення мультиколінеарності. Метод головних компонентів
- •Контрольні запитання
- •Тема 5. Гетероскедастичність
- •5.1. Виявлення гетероскедастичності та її природа
- •5.2. Тестування наявності гетероскедастичності
- •5.2.1. Параметричний тест Гольдфельда–Квандта
- •5.2.2. Непараметричний тест Гольдфельда–Квандта
- •5.2.3. Тест Глейсера
- •Дані до задачі
- •Дані до задачі
- •Перша сукупність спостережень:
- •Друга сукупність спостережень:
- •5.3. Усунення гетероскедастичності
- •5.4. Узагальнений метод найменших квадратів
- •Контрольні запитання
- •Тема 6. Автокореляція
- •6.1. Природа автокореляції та її наслідки
- •6.2. Тестування наявності автокореляції
- •6.2.1. Критерій Дарбіна – Уотсона
- •6.2.2. Критерій фон Неймана
- •6.2.3. Коефіцієнти автокореляції та їх застосування
- •6.3. Параметризація моделі з автокорельованими залишками
- •6.4. Приклад
- •Контрольні запитання
- •Тема 7. Моделі розподіленого лага
- •7.1. Поняття лага та лагових моделей в економіці
- •7.2. Оцінювання параметрів дистрибутивно-лагових моделей
- •7.3. Оцінювання параметрів авторегресійних моделей
- •Контрольні запитання
- •Тема 8. Системи одночасних рівнянь
- •8.1. Поняття про системи одночасних рівнянь
- •8.2. Приклади систем одночасних рівнянь
- •1. Модель «попит — пропозиція»
- •2. Модель рівноваги на ринку товарів (модель is)
- •3. Модель рівноваги на ринку грошей (модель lм)
- •8.3. Структурна та зведена (прогнозна) форми системи рівнянь
- •1. Структурна форма економетричної моделі.
- •2. Повна економетрична модель
- •3. Зведена форма економетричної моделі
- •8.4. Поняття ідентифікації (ототожнення) системи рівнянь
- •Необхідні й достатні умови ідентифікованості
- •Необхідна і достатня умова ідентифікованості
- •8.5. Методи оцінювання параметрів систем рівнянь
- •Контрольні запитання
- •Комплект лабораторних робіт
- •Лабораторна робота (вступна)
- •Тема: Вивчення можливостей Майстра функцій ms excel
- •Мета: набути навички використання Майстра функцій ms excel при розв’язуванні економетричних задач
- •Завдання для самостійного виконання
- •Лабораторна робота 1 Тема: Побудова однофакторної економетричної моделі Мета: набути навички побудови однофакторної економетричної моделі та її дослідження засобами ms excel
- •Завдання для самостійної роботи
- •Завдання для самостійної роботи
- •Лабораторна робота 2 Тема: побудова загальної лінійної економетричної моделі Мета: набути навички побудови загальної лінійної економетричної моделі та її дослідження засобами ms excel
- •Завдання для самостійної роботи
- •Завдання для самостійної роботи
- •Лабораторна робота 4 Тема: дослідження наявності мультиколінеарності за алгоритмом Фаррара–Глобера Мета: набути навички дослідження наявності мультиколінеарності засобами ms excel
- •Завдання для самостійної роботи
- •Завдання для самостійної роботи
- •Завдання для самостійної роботи
- •Лабораторна робота 7 Тема: дослідження лагових моделей Мета: набути навички дослідження лагових моделей засобами ms excel
- •Завдання для самостійної роботи
- •Дані до задачі
- •Рекомендована література
- •Додатки
7.2. Оцінювання параметрів дистрибутивно-лагових моделей
Для оцінювання параметрів дистрибутивно-лагових моделей звичайно застосовують два можливих підходи: послідовне оцінювання і апріорне оцінювання.
Ідея першого підходу полягає в тому, щоб поступово досліджувати вплив запізнених змінних на залежну змінну. Другий підхід базується па припущенні, що параметри моделі мають певну закономірність, тобто пов'язані між собою деякими співвідношеннями.
Послідовне оцінювання параметрів виконується так: спочатку будують регресію залежної та незалежної змінних в один і той самий момент часу, потім до моделі додають ще одну змінну — незалежну змінну в попередній момент часу, тобто розглядають залежність показника від двох змінних. Далі в регресію вводиться ще одна змінна — у момент часу, зсунутий на два попередніх проміжки, і т. д. Кожна з моделей досліджується па адекватність і значущість її параметрів. Процедура закінчується, коли параметри при лагових змінних починають бути статистично незначущими та (або) коефіцієнт хоча б однієї змінної змінює свій знак.
Такий метод хоч і повний, однак має певні недоліки. По-перше, невідомою є максимальна тривалість лага, а це не дає змоги передбачити, скільки змінних увійде в модель. По-друге, між послідовними значеннями змінних здебільшого спостерігається висока кореляція, що породжує проблему мультиколінеарності в моделі. Крім того, через зменшення ступенів свободи в таких моделях оцінки стають дещо непевними, що також знижує їх якість.
Наявність мультиколінеарності між лаговими змінними ускладнює побудову моделі. Щоб усунути мультиколінеарність, на коефіцієнти при лагових змінних накладають додаткові обмеження (апріорне оцінювання), а саме вибирають їх так, щоб вплив лага па досліджуваний показник був «односпрямований» (тобто коефіцієнти були б однакового знака) і зменшувався з кожним наступним кроком у минуле. Такі припущення реалізують, як правило, у моделях, де параметри змінюються в геометричній прогресії. Крім того, нескінченна сума членів спадної геометричної прогресії є скінченою величиною, що дає змогу узагальнити модель з кінцевим лагом і застосовувати однакові методи оцінювання параметрів.
Однак і в цьому разі залишається велика кількість оцінюваних параметрів.
Уведення в модель лагової
залежної змінної
(затримка на один
період), відоме як перетворення Койка,
значно спрощує модель:
(7.2).
Така модель містить не лише поточні, а й попередні значення залежної змінної, тобто є авторегресійною.
Заміна незалежних лагових
змінних
однією залежною змінною
зменшує кількість оцінюваних параметрів
і усуває проблему мультиколінеарності,
однак призводить до нових труднощів.
Наявність у моделі лагової залежної
змінної потребує перевірки передумови
про незалежність змінних і залишків
при застосуванні звичайного МНК.
Крім того, залишки моделі
часто виявляються серійно корельованими,
а тому при дослідженні їх на автокореляцію
необхідно використати спеціальні тести.
Отримана алгебраїчним способом модель Койка позбавлена теоретичного обґрунтування і фактично є послідовною моделлю.
З певних економічних міркувань можна отримати моделі, що зовні нагадують модель Койка, але з іншою інтерпретацією коефіцієнтів лагових змінних. Такими моделями є модель адаптивних сподівань
(7.3)
та модель часткового коригування
(7.4)
Ці моделі відрізняються від моделі Койка наявністю вільного члена, але при цьому реалізують різні ідеї щодо економічної діяльності. У першій моделі відображено думку про те, що люди навчаються з попереднього досвіду, причому нещодавній досвід має більший вплив, аніж попередній; друга базується на тому, що через інертність економічної системи зміна одного економічного показника не одразу впливає на зміну іншого і відповідний рівень залежної змінної досягається через певний час.