
- •4 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Краткий курс лекций
- •4.1 Раздел: Основные понятия и законы химии
- •Типы химических реакций
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •4.2 Раздел: “Растворы. Энергетика растворения и свойства растворов”
- •Агрегатное состояние вещества
- •Массовая доля растворенного вещества в растворе ω – число единиц массы (г,кг) растворенного вещества, содержащихся в 100 единицах массы (г,кг) раствора.
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •Уравнения ионных реакций
- •Памятка по составлению ионных уравнений
- •Задания для контроля усвоения темы
- •Гидролиз
- •Задания для контроля усвоения темы
- •Значение явления гидролиза солей
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •Способы получения коллоидных растворов
- •Структура коллоидных систем
- •Свойства коллоидных систем
- •Задания для контроля усвоения темы
- •4.3 Раздел: Химическая кинетика. Химическое равновесие
- •П р и м е р 2. Реакция в гетерогенной системе
- •О т в е т. При повышении температуры с 20о до 40о скорость реакции возрастет в 9 раз. Зависимость скорости реакции от температуры точнее может быть выражена уравнением Аррениуса
- •П р и м е р 1. Константа скорости некоторой реакции при 20о равна 2 · 10-2, а при 40о 3,6 · 10-1. Вычислить энергию активации.
- •П р и м е р 3. Вычислить равновесные концентрации [h2] и [i2] в реакции
- •Задания для контроля усвоения темы
- •4.4 Раздел: Окислительно-восстановительные процессы
- •Составление уравнений окислительно-восстановительных реакций методом электронного баланса:
- •Составление окислительно-восстановительных реакций ионно-электронным методом (методом полуреакций).
- •Электрохимические и коррозионные свойства металлов
- •Устройство медно-цинкового гальванического элемента (элемента Якоби-Даниэля)
- •Электролиз
- •Примеры написания уравнений реакций электролиза.
- •Задачи для контроля усвоения темы.
- •Задания для контроля усвоения заданной темы.
- •Задания с профессиональной направленностью.
- •4.5 Раздел: Строение атомов и структура периодической системы химических элементов д.И.Менделеева
- •Строение и важнейшие свойства атомных ядер
- •Энергия связи ядер. Дефект массы
- •*Латаноиды ( электроотрицательность 1.0 - 1.2 )
- •**Актиноиды ( электроотрицательность 1.0 - 1.2 )
- •Понятие о квантовой механике
- •Квантование энергии электрона в атоме
- •Соотношение неопределенностей Гейзенберга
- •Уравнение Шрёдингера
- •Квантовые числа
- •Энергетические уровни и подуровни
- •Электронная плотность
- •Принцип минимума энергии
- •Принцип Паули
- •Правило Гунда
- •Электронные конфигурации атомов
- •Магнитные характеристики атома
- •Энергия ионизации
- •Сродство к электрону
- •Электроотрицательность
- •Химическая связь и пространственное строение молекул
- •Ионная связь
- •Ионные радиусы
- •Энергия ионной связи
- •Валентные углы
- •Энергия ковалентной связи
- •Полярность ковалентной связи
- •Металлическая связь
- •Метод валентных связей
- •Перекрывание атомных орбиталей
- •Механизмы образования ковалентных связей
- •Гибридизация атомных орбиталей
- •Дипольные моменты молекул
- •Метод молекулярных орбиталей
- •Двухцентровые молекулярные орбитали
- •Многоцентровые молекулярные орбитали
- •Межмолекулярное взаимодействие
- •Ориентационное взаимодействие
- •Индукционное взаимодействие
- •Дисперсионное взаимодействие
- •Межмолекулярное отталкивание
- •Водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •Аномалии свойств, обусловленные наличием водородной связи
- •4.6 Раздел: “Комплексные соединения”
- •Номенклатура комплексных соединений
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •4.7 Раздел: Общая характеристика металлов. Сплавы
- •Химические свойства металлов
- •Задания для контроля усвоения темы
- •4.8 Раздел: Металлы 1а, 2а и 3а п∕ групп
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •4.9 Раздел: Главные переходные металлы
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •4.10 Раздел: основы химического анализа
- •Задания для контроля усвоения темы.
- •4.11 Раздел: органические вещества и их особенности
- •Классификация органических соединений
- •Классификация органических реакций по составу исходных веществ и продуктов реакции
- •Классификация
- •Овцы в синтетических шубах
- •Нумерованные животные
- •Микроб - кормилец
- •Синтетическая травка
- •Пластмассовые ракеты
- •Пластмассовый шлюз
- •Сварка без нагрева
- •Задания для контроля усвоения темы
- •Задания с профессиональной направленностью
- •Литература
- •Основная литература:
- •Дополнительная литература.
Примеры написания уравнений реакций электролиза.
Электролиз раствора NaCl (анод инертный)
К (-) : Na+ ; H2O
H2O + 2e H2 + 2OH-
А (+) : Cl- ; H2O
2 Cl- - 2е Cl2
2H2O +2NaCl эл. ток H2 + Cl2 + 2NaOH
В результате на катоде выделяется Н2, на аноде Cl2 , а в катодном пространстве электролизера накапливается NaOH
Электролиз раствора ZnSO4 (анод инертный)
К (-) : Zn2+; H2O
Zn2+ + 2е Zn0
2H2O + 2e H2 + 2OH-
А (+) : 2H2O – 4e O2 + 4H+
Zn2+ +4H2O Zn + H2 + O2 + 2OH- + 4H+
После сокращения молекул Н2О и добавления в обе части уравнения ионов SO42-, получим молекулярное уравнение электролиза:
ZnSO4 + 2H2O эл. ток Zn + H2 + O2 + H2SO4
Электролиз раствора K2SO4 (анод инертный)
К (-) : К+ ; H2O
H2O + 2e H2 + 2OH-
А (+) : SO42- ; H2O
2H2O – 4e O2 + 4H+
2Н2О + 2е эл. ток О2 + 2Н2
т.е. электролиз раствора сульфата калия сводится к разложению воды. Концентрация соли в растворе увеличивается.
Электролиз раствора ZnSO4 с анодом из цинка.
К (-) : Zn2+; H2O
Zn2+ + 2е Zn0
2H2O + 2e H2 + 2OH-
А (+) : Zn0; H2O
Zn0 -2е Zn2+
Zn0 + Zn2+ Zn2+ + Zn0
Т.е. электролиз раствора ZnSO4 с анодом из цинка сводится к переносу цинка с анода на катод..
Между количеством вещества, выделившегося на электродах при электролизе, количеством прошедшего через раствор электричества и временем электролиза существуют зависимости, выражаемые законом Фарадея.
Первый закон Фарадея: масса вещества, выделившегося или растворившегося на электродах, прямо пропорционально количеству прошедшего через раствор электричества:
МЭ I t
m = --------- ; где m – масса вещества, выделившегося на электродах,
F МЭ – молярная масса эквивалента вещества, г/моль,
I – сила тока, А;
t - время электролиза, сек.;
F – постоянная Фарадея (96500 Кл/моль).
Второй закон Фарадея: при определенном количестве электричества, прошедшего через раствор, отношение масс прореагировавших веществ равно отношению молярных масс их химических эквивалентов:
m1 m2 m3
--- = ---- = ---- = соnst
МЭ1 МЭ2 МЭ3
Для выделения или растворения 1 моль эквивалента любого вещества необходимо пропустить через раствор или расплав одно и тоже количество электричества, равное 96 500 Кл. Эта величина получила название постоянной Фарадея.
Количество вещества, выделившегося на электроде при прохождении 1Кл электричества, называется его электрохимическим эквивалентом (ε ).
Мэ
ε =. ------- , где ε - электрохимический
F эквивалент
Мэ – молярная масса эквивалента
элемента (вещества); , г/моль
F – постоянная Фарадея, Кл/моль.
Таблица 4 - Электрохимические эквиваленты некоторых элементов
катион |
Мэ, г/моль |
ε , мг |
Анион |
Мэ, г/моль |
ε , мг |
Ag+ Al3+ Au3+ Ba2+ Ca2+ Cd2+ Cr3+ Cu2+ Fe2+ Fe3+ H+ K+ Li+ Mg2+ Mn2+ Na+ Ni2+ Pb2+ Sn2+ Sr2+ Zn2+
|
107,88 8,99 65,70 58,70 20,04 56,20 17,34 31,77 27,92 18,61 1,008 39,10 6,94 12,16 27,47 22,90 29,34 103,60 59,40 43,80 32,69 |
1,118 0,93 0,681 0,712 0,208 0,582 0,179 0,329 0,289 0,193 0,0105 0,405 0,072 0,126 0,285 0,238 0,304 1,074 0,616 0,454 0,339 |
Br- BrO3- Cl- ClO3- HCOO- СН3СОО- CN- CO32- C2O42- CrO42- F- I- NO3- IO3- OH- S2- SO42- Se2- SiO32- |
79,92 127,92 35,46 83,46 45,01 59,02 26,01 30,00 44,50 58,01 19,00 126,42 174,92 62,01 17,00 16,03 48,03 39,50 38,03 |
0,828 1,326 0,368 0,865 0,466 0,612 0,270 0,311 0,456 0,601 0,197 1,315 1,813 0,643 0,177 0,170 0,499 0,411 0,395 |
Процессы окисления и восстановления лежат в основе работы таких химических источников тока, как аккумуляторы.
Аккумуляторами называются гальванические элементы, в которых возможны обратимые процессы зарядки и разрядки, совершаемые без добавления участвующих в их работе веществ.
Для восстановления израссходованной химической энергии аккумулятор заряжают, пропуская ток от внешнего источника. При этом на электродах протекают электрохимические реакции, обратные тем, что имели место при работе аккумулятора в качестве источника тока.
Наиболее распространенными в настоящее время являются свинцовые аккумуляторы, в которых положительным электродом служит диоксид свинца PbO2 , а отрицательным – металлический свинец Pb.
В качестве электролита применяют 25-30% раствор серной кислоты, поэтому свинцовые аккумуляторы называют еще кислотными.
Процессы, протекающие при разрядке и зарядке аккумулятора, суммарно могут быть представлены: разрядка
Pb0 + Pb+4O2 + 4Н+ + 2SO42- 2Pb0 +2SO42-+ 2H2O
зарядка
Помимо свинцового аккумулятора в практике находят применение щелочные аккумуляторы: никель-кадмиевые, никель-железные.
Таблица 5 – Виды аккумуляторов
Тип аккумулятора |
Система |
Электродные реакции |
ЭДС, В |
Свинцовый Серебряно-цинковый Никель- цинковый Серебряно-кадмиевый Железо-никелевый Никель-кадмиевый |
PbO2 H2SO4 Cd Ag2O KOH Zn
NiOOH KOH Zn
Ag2O KOH Cd
NiOOH KOH Fe
NiOOH KOH Cd
|
PbO2 + Pb+2H2SO4 2PbSO4+2H2O 2Ag2O+2Zn+H2O4Ag+ZnO+Zn(OH)2
2NiOOH+Zn+2H2O2Ni(OH)2+Zn(ОH)2
2Ag2O+2Cd+H2O 4Ag+CdO+Cd(OH)2
2NiOOH+Fe+2H2O2Ni(OH)2+Fe(OH)2
2NiOOH+Cd+2H2O2Ni(OH)2+Cd(OH)2
|
2,10 1,85
1,70
1,50
1,40
1,36 |
Коррозия металлов
Термин коррозия происходит от латинского "corrosio", что означает разъедать, разрушать. Этот термин характеризует как процесс разрушения, так и результат. Среда, в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой. В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии является окисление металла.
Любой коррозионный процесс является многостадийным:
1) Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
2) Взаимодействие среды с металлом.
3) Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).
Известно, что большинство металлов (кроме Ag,Pt,Cu,Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно руды металлов.
Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.
Коррозионный процесс является самопроизвольным, следовательно G = G2-G1 (G1 и G2 относятся к начальному и конечному состоянию соответственно). Если G1>G2 то G<0, т.е. коррозионный процесс возможен; G>0 коррозионный процесс невозможен; G=0 система металл-продукт находится в равновесии. То есть можно сказать, что первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде.
Классификация коррозионных процессов
1. По механизму процесса различают химическую и электрохимическую коррозию металла.
Химическая коррозия - это взаимодействие металлов с коррозионной средой, при котором окисляется металл и восстанавливается окислительные компоненты коррозионной среды протекают в одном акте. Так протекает окисление большинства металлов в газовых средах содержащих окислитель (например, окисление в воздухе при повышении температуры)
Mg+ O -> MgO
4Al + 3O -> 2Al2O3
Электрохимическая коррозия - это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты среды происходит не в одном акте, и их скорости зависят от электродного потенциала металла. По такому процессу протекают, например, взаимодействие металла с кислотами:
Zn + 2HCl -> ZnCl2 +H2
эта суммарная реакция состоит из двух актов:
Zn -> Zn + 2e
2H + 2e -> H2
2. По характеру коррозионного разрушения.
Общая или сплошная коррозия, при которой коррозирует вся поверхность металла. Она соответственно делится на равномерную, не равномерную и избирательную, при которой коррозионный процесс распространяется преимущественно по какой-либо структурной составляющей сплава.
Местная коррозия при которой коррозируют определенные участки металла:
а) коррозия язвами - коррозионные разрушения в виде отдельных средних и больших пятен (коррозия латуни в морской воде)
б) межкристаллическая коррозия при ней процесс коррозии распространяется по границе металл-сплав (алюминий сплавляется с хромоникелем) и другие виды коррозии.
3. По условиям протекания процесса.
а) Газовая коррозия - это коррозия в газовой среде при высоких температурах. (жидкий металл, при горячей прокатке, штамповке и др.)
б) Атмосферная коррозия - это коррозия металла в естественной атмосфере или атмосфере цеха (ржавление кровли, коррозия обшивки самолета).
в) Жидкостная коррозия - это коррозия в жидких средах: как в растворах электролитов, так и в растворах не электролитов.
г) Подземная коррозия - это коррозия металла в почве
д) Структурная коррозия - коррозия из-за структурной неоднородности металла.
е) Микробиологическая коррозия - результат действия бактерий
ж) Коррозия внешним током - воздействие внешнего источника тока (анодное или катодное заземление)
з) Коррозия блуждающими токами - прохождение тока по непредусмотренным путям по проекту.
и) Контактная коррозия - сопряжение разнородных электрохимических металлов в электропроводящей среде.
к) Коррозия под напряжением - одновременное воздействие коррозионной среды и механического напряжения.