Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л10 Схемы ГПП.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
306.18 Кб
Скачать

3. Схемы блочных подстанций пятого уровня

Большинство подстанций промышленных предприятий выполняют без сборных шин на стороне первичного напряжения по блочному принципу в виде следующих схем: 1) линия – трансформатор; 2) линия – трансформатор – токопровод (магистраль). Блочные схемы просты и экономичны. Установка, как правило, двух трансформаторов на подстанциях промышленных предприятий обеспечивает по надежности электроснабжение потребителей 1-й категории (рис. 4).

Рис. 4 Безмостиковые схемы блочных ГПП

Рис. 5 Схемы подстанций с перемычками (мостиками) между питающими линиями

Схемы с перемычками (рис. 5) между питающими линиями следует применять лишь в случае обоснованной необходимости устройства перемычек. В загрязненных зонах от данных схем следует отказаться из-за наличия дополнительных элементов, подвергающихся загрязнению и увеличивающих вероятность аварий на подстанции.

4. Схемы специфических подстанций.

Вследствие индивидуальности крупных электроприемников (потребителей) необходима разработка оригинальных схем электроснабжения и подстанций 5УР, 4УР (эта проблема практически отсутствует для мини- и мелких предприятий, электроснабжение которых осуществляется на напряжении ниже 1 кВ).

Схемы ГПП и РП, отличающиеся от подстанций, питающих спокойную нагрузку, можно подразделить на схемы, предназначенные: для электроснабжения дуговых сталеплавильных печей; для потребителей с резкопеременной и ударной нагрузкой отдельного электроприемника (группы) с большой единичной мощностью (по условиям пуска, например, определяющего трансформатор и присоединение); для потребителей с особыми требованиями по преобразованию тока (электролиз, сварка), качеству электроэнергии и надежности в различных технологических, ремонтных и аварийных режимах. При разработке таких схем важны обеспечение качества электроэнергии и компенсация реактивной мощности.

Нелинейные нагрузки (вентильные преобразователи, дуговые печи и др.) работают, как правило, с низким коэффициентом мощности (0,4–0,8), поэтому необходима компенсация реактивной мощности. Изменения нагрузки дуговых сталеплавильных печей, особенно реактивной мощности, вызывают значительные колебания напряжения в питающей сети, которые тем больше, чем больше мощность печного трансформатора и меньше мощность КЗ в точке присоединения дуговой печи. Особенно большие колебания нагрузки печи и наибольшие снижения напряжения происходят при эксплуатационных КЗ, например при погружении электродов в расплавленный металл. Значения изменений тока при этом могут достигать 1,5–2Iном для дуговой сталеплавильной печи большой емкости и 2,5–3,5Iном для печей средней и малой емкости, что важно для определения мощности сетевых трансформаторов и согласований схем с энергосистемой.

Рис. 6 Однолинейная схема подстанции с фильтрами 5-й гармоники

При электроснабжении производства (цеха) с нелинейной нагрузкой вопросы обеспечения качества электроэнергии и компенсации реактивной мощности решают локально для подстанции 5УР (4УР) (рассчитывают реактивную нагрузку и определяют необходимость установки фильтров). Это делает схему и компоновку подстанций нетиповой, а сам процесс принятия технического решения творческим. На рис. 5.6 показана обобщенная однолинейная схема подстанции, питающей вентильную нагрузку, с параллельно установленными на шинах подстанции силовыми фильтрами 5-й гармоники.